初中数学人教版(2024)七年级上册(2024)6.3 角教案
展开
这是一份初中数学人教版(2024)七年级上册(2024)6.3 角教案,共6页。
教学流程图
地位与作用
角是学生继直线、射线、线段后学习的又一基本图形,是研究相交线与平行线的重要工具,也是三角形、四边形等几何图形的重要组成部分.
学生在小学对角的概念已有初步的认识,本节课将在此基础上进一步认识角的静态和动态两种描述方式、角的表示以及角度制.
角的表示是后续几何图形学习的基础,角度制是角的度量与运算的基础.
概念解析
角是有公共端点的两条射线组成的图形(静态);由一条射线绕着它的端点旋转而形成的图形(动态);角度制是以度、分、秒为单位的角的度量制.
思想方法
角的动态描述涉及从运动变化的角度看待几何图形,体现了运动变化的观点,反映的数形结合的思想。度、分、秒之间的换算可以类比时间上的时、分、秒.
知识类型
角的定义是概念性知识。角度制是角度的度量的一种方法,是关于原理与规则的知识,教学中应让学生认识角的定义的合理性.
教学重点
基于以上分析,确定本节课的教学重点:角的概念及其表示方法,角的度量单位及其换算.
教学目标解析
教学目标:
1.会画出并表示一个角;
2.认识度、分、秒,会对度、分、秒进行简单的换算.
目标解析:
达成目标1的标志是:会画出一个角,并能够恰当选择大写字母或数字以及希腊字母表示这个角;
达成目标2的标志是:知道度、分、秒是60进制的,能进行度、分、秒之间的简单换算.
教学问题诊断分析
具备的基础
学生在小学阶段已学习角的静态描述,并已在上一节学习了直线、射线、线段的表示方法.
与本课目标的差距分析
学生刚接触用符号语言表示几何图形,还不熟练;学生知道量角的单位是度,还不知道分、秒以及它们之间的换算.
存在的问题:
角的表示方法多样,有的用三个大写字母表示,有的用一个大写字母表示,学生可能出现混淆或表示错误的情况;由于接触60进制较少,学生在角的单位换算时可能出现错误.
应对策略:
教学中,教师通过讲解示范并安排易错问题的展示与分析,引导学生恰当选择方法表示角;类比时间的时、分、秒,加强学生对度、分、秒的认识.
教学难点
本节课的教学难点是:角的表示与度、分、秒之间的换算.
教学支持条件分析
学生在画角的过程中需要直尺,度量角时需要用到量角器,在展示角的动态定义时,教师可以借助圆规这个教具进行演示,以及使用几何画板进行动态演示.
教学过程设计
课前检测
1.写出钟面上的时间,此时时针和分针所成的角度是多少?
2.如图,用量角器测量出角的度数是_______.
3.如图中,∠1=130°,∠2=50°,这两个角构成一个_______角.
设计意图:通过测试了解学生在小学阶段对角的概念、度量以及一些特殊角的掌握情况.
温故新知
问题1.(1)生活中有许多与角有关的实例,观察下图,你能指出图中的角吗?
(2)你还记得角的概念吗?
师生活动设计:学生观察实例,回顾小学对角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点叫角的顶点,两条射线叫角的两条边.
设计意图:从实例中抽象出角的图形,复习角的静态定义.
问题2. 我们可以用一个大写字母表示点,两个大写字母表示线,那么角可以怎样表示呢?
师生活动设计:教师展示三种不同标记的角,学生观察,讨论.
教师明确:角可以用三种方法表示:
(1)用三个大写字母表示:如∠AOB 或∠BOA ;或用一个大写字母表示:如∠O;
(2)用小写希腊字母表示:如∠α,∠β;
(3)用数字表示:如∠1、 ∠2.
设计意图:经过观察、思考,熟悉角的三种表示方法.
即时检测:如图所示:(1)以O为顶点的角有几个?请分别表示.
(2)∠1能用∠O来表示吗?为什么?
设计意图:巩固角的概念和表示方法.
拓展新知
问题3:教师借助教学圆规,展示由闭合到打开到一个角度的过程,演示几次,提出问题:观察圆规形成角的过程,请想一想角除了刚才的定义之外,还可以怎样描述?
师生活动设计设计:学生讨论,教师点评并明确:角可以看成由一条射线绕着它的端点旋转形成的图形,这可以称为角的动态定义.
设计意图:通过演示感受射线绕端点旋转形成角的过程,加深对角的动态定义的理解.
追问:教师继续演示,当圆规的两脚成一条直线时,所得的角是多少度?若能继续旋转下去,圆规的一脚回到起始位置时,所得的角又是多少度?
师生活动设计:通过学生独立思考,引导学生发现分别是180°和360°,即为平角和周角.
设计意图:巩固角的动态定义,帮助学生更好的理解平角和周角的概念.
问题4:我们常用量角器量角,角的单位是什么?
师生活动设计:启发学生回答:度.
教师追问:为了更精确的表示角,还需要比度小的单位,数学中叫做分和秒.说到分和秒,你联想到什么了吗?
师生活动设计:通过观察教室时的时针,引导学生发现时间单位中有分和秒.教师指出角度制和时间的度量,两者不止名称一样,连单位换算也是一样的:
把一个周角360等分,每一份就是1度的角,记做1°.
1°的60分之一为1分,记作1′,即1°=60′;
1′的60分之一为1秒,记作1″,即1′=60″.
以度、分、秒为单位的角的度量制,叫做角度制.
设计意图:通过类比时间单位,了解度、分、秒及其单位换算.
即时检测:(1)37.5°=________°________′
(2)39°36′=________°
实践应用
例1.将图中的角用不同的方法表示出来,并填写下表
师生活动设计:学生先独立完成,之后小组讨论、改错,教师参与学生讨论.
设计意图:巩固角的三种表示方法.
例2. 25º12′和25.12º相等吗?如果不相等,哪个大?
你能用计算器验证你的结论吗?
师生活动设计:学生小组讨论,教师巡视,请学生代表展示结论.
设计意图:巩固度、分、秒之间的单位换算,通过计算器的使用,使学生进一步认识角度制,为角度的运算打下基础.
课堂小结
1.我们学习了角的两种定义,分别是什么?
2.角有哪些表示方法?
3.度、分、秒之间是如何换算的?
设计意图:回顾本节课的主要知识点,加深对角的表示方法的认识,进一步巩固角度制.
目标检测设计
1.下列四个图形中,能同时用∠1,∠ABC,∠B三种方法表示同一个角的图形是( )
A. B. C. D.
2.下列说法中正确的是( ).
A.两条射线组成的图形叫做角
B.平角的两边构成一条直线
C.角的两边都可以延长
D.由射线OA、OB组成的角,可以记作∠OAB
3.时钟上有12个大格,每个大格又分5个小格,则每个大格对着的角是_______°,每个小格对着的角是_______°.
4.(1)45°24′=_________°.
(2)25.72°=______°______′_______″.
5.如图,AB是一条直线,如果∠1=65°15′,∠2=78°30′,求∠3的度数.
相关教案
这是一份初中数学人教版(2024)七年级上册(2024)6.3 角教案,共10页。
这是一份七年级上册(2024)第六章 几何图形初步6.3 角教学设计及反思,共5页。教案主要包含了角的概念的辨析,角的单位的换算等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程教学设计,共2页。