所属成套资源:2025高考数学【考点通关】考点归纳与解题策略考点全归纳(原卷版+解析)
- 2025高考数学【考点通关】考点归纳与解题策略巩固练05基本不等式及其应用12种常见考点全面练(精练99题)(原卷版+解析) 试卷 0 次下载
- 2025高考数学【考点通关】考点归纳与解题策略巩固练07函数的单调性与最值14种常见考点全面练(精练73题)(原卷版+解析) 试卷 0 次下载
- 2025高考数学【考点通关】考点归纳与解题策略考点03等式与不等式的性质7类常见考点全归纳(精选52题)(原卷版+解析) 试卷 0 次下载
- 2025高考数学【考点通关】考点归纳与解题策略考点04一元二次不等式与其他常见不等式解法6类常见考点全归纳(原卷版+解析) 试卷 0 次下载
- 2025高考数学【考点通关】考点归纳与解题策略考点05基本不等式及其应用7类常见考点全归纳(精选128题)(原卷版+解析) 试卷 0 次下载
2025高考数学【考点通关】考点归纳与解题策略考点02常用逻辑用语5类常见考点全归纳(精选74题)(原卷版+解析)
展开
这是一份2025高考数学【考点通关】考点归纳与解题策略考点02常用逻辑用语5类常见考点全归纳(精选74题)(原卷版+解析),共54页。试卷主要包含了充分条件与必要条件的判断,充分条件与必要条件的探求与应用,根据含有量词命题的真假求参数等内容,欢迎下载使用。
考点一 充分条件与必要条件的判断
考点二 充分条件与必要条件的探求与应用
(一)充分条件、必要条件的探求
(二)利用充分、必要条件求参数的取值范围
(1)利用充分不必要条件求参数的取值范围
(2)利用必要不充分条件求参数的取值范围
(3)利用充要条件求参数的取值范围
考点三 全称量词命题与存在量词命题的真假判断
考点四 全称量词命题与存在量词命题的否定
(一)全称量词命题的否定
(二)存在量词命题的否定
考点五 根据含有量词命题的真假求参数
(一)根据全称(存在)量词命题的真假求参数
(二)根据全称(存在)量词命题的否定的真假求参数
知识点1 充分条件、必要条件与充要条件的概念
知识点2 全称量词与存在量词
1.命题
用语言、符号或式子表达的,可以判断真假 的陈述句叫做命题.
2.全称量词命题与存在量词命题
(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词 的命题,叫做全称量词命题.
(2)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词 的命题,叫做存在量词命题.
3.全称量词命题和存在量词命题的否定
1.充要条件的四种判断方法
(1)定义法:根据p⇒q,q⇒p进行判断;
对充分和必要条件的理解和判断,要搞清楚其定义的实质:,则是的充分条件,同时是的必要条件.所谓“充分”是指只要成立,就成立;所谓“必要”是指要使得成立,必须要成立(即如果不成立,则肯定不成立).
牢记:小范围可以推大范围,大范围不可以推小范围
注意区别是的充分不必要条件与的充分不必要条件是两者的不同.
(1)是的充分不必要条件且(注意标志性词:“是”,此时与正常顺序)
(2)的充分不必要条件是且(注意标志性词:“的”,此时与倒装顺序)
(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题
第一:化简条件和结论
第二:根据条件与结论范围的大小进行判断
第三:充分、必要条件的判断,一般可根据如下规则判断:
若以集合的形式出现,以集合的形式出现,即:,:,则
①若,则是的充分条件;
②若,则是的必要条件;
③若,则是的充分不必要条件;
④若,则是的必要不充分条件;
⑤若,则是的充要条件;
⑥若且,则是的既不充分也不必要条件
(3)传递法:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件.
①若是的充分条件,是的充分条件,则是的充分条件;
②若是的必要条件,是的必要条件,则是的必要条件;
③若是的充要条件,是的充要条件,则是的充要条件.
(4)等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假
注:等价转化法判断充分条件、必要条件
(1)是的充分不必要条件是的充分不必要条件;
(2)是的必要不充分条件是的必要不充分条件;
(3)是的充要条件是的充要条件;
(4)是的既不充分也不必要条件是的既不充分也不必要条件.
2.充分条件与必要条件的判断要明确三点
(1)要明确推出的含义,是成立一定成立才能叫推出而不是有可能成立.
(2)充分必要条件在面对集合问题时,一定是小集合推出大集合,而大集合推不出小集合.
(3)充分必要条件考察范围广,失分率高,一定要注意各个知识面的培养.
3.判断充要条件需注意的三点
(1)要分清条件与结论分别是什么;
(2)要从充分性、必要性两个方面进行判断;
(3)直接判断比较困难时,可举出反例说明.
4.把握探求某结论成立的充分、必要条件的3个方面
①准确化简条件,也就是求出每个条件对应的充要条件;
②注意问题的形式,看清“p是q的……”还是“p的……是q”,如果是第二种形式,要先转化为第一种形式,再判断;
③灵活利用各种方法判断两个条件之间的关系,充分、必要条件的判断常通过“⇒”来进行,即转化为两个命题关系的判断,当较难判断时,可借助两个集合之间的关系来判断.(对于充分、必要条件的探求,一般转化为集合问题.根据“小充分、大必要”判断求解其充分、必要条件.注意理解:“充分性”即“有它就行”;“必要性”即“没它不行”.)
5.根据充分、必要条件求解参数范围的方法及注意点
①把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;
②要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.
6.常见的一些词语和它的否定词如下表
7.判断语句是全称量词命题还是存在量词命题的步骤
(1)判断语句是否为命题,若不是命题,就当然不是全称量词命题或存在量词命题.
(2)若是命题,再分析命题中所含的量词,含有全称量词的命题是全称量词命题,含有存在量词的命题是存在量词命题.
(3)当命题中不含量词时,要注意理解命题含义的实质.
注:全称量词命题可能省略全称量词,存在量词命题的存在量词一般不能省略.
图示如下:
8.全称量词命题和存在量词命题的不同表述方法
9.全称量词命题与存在量词命题的真假判定的技巧
(1)全称量词命题的真假判定
要判定一个全称量词命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称量词命题是假命题,只需举出集合M中的一个x,使得p(x)不成立即可(这就是通常所说的“举出一个反例”).
(2)存在量词命题的真假判定
要判定一个存在量词命题是真命题,只要在限定集合M中,找到一个x,使p(x)成立即可,要判断一个存在量词命题为假,必须验证给定集合中的每一个元素x,使命题p(x)不成立.
图示如下:
10.全称量词命题与存在量词命题的否定的步骤
①改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写;
②否定结论:对原命题的结论进行否定.
11.全称量词命题否定后的真假判断方法
全称量词命题的否定是存在量词命题,其真假性与全称量词命题相反;要说明一个全称量词命题是假命题,只需举一个反例即可.
12.命题的否定与否命题的区别
“否命题”是对原命题“若,则”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“非”,只是否定命题的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.
13.利用含量词的命题的真假求参数范围的技巧
(1)首先根据全称量词和存在量词的含义透彻地理解题意.
(2)其次根据含量词命题的真假把命题的真假问题转化为集合间的关系或函数的最值问题,再转化为关于参数的不等式(组)求参数的取值范围.
具体如下:
(1)对于全称量词命题“∀x∈M,a>y(或aymax(或ay(或aymin(或a
相关试卷
这是一份2025高考数学【考点通关】考点归纳与解题策略考点14函数模型及其应用10类常见考点全归纳(精选72题)(原卷版+解析),共78页。试卷主要包含了用函数图象刻画变化过程,已知函数模型解决实际问题,利用二次函数模型解决实际问题,利用分段函数模型解决实际问题,利用分式函数模型解决实际问题,利用指数函数模型解决实际问题,利用对数函数模型解决实际问题,利用幂函数模型解决实际问题等内容,欢迎下载使用。
这是一份2025高考数学【考点通关】考点归纳与解题策略考点13函数与方程11类常见考点全归纳(精选112题)(原卷版+解析),共22页。试卷主要包含了求函数的零点,确定零点所在的区间,判断函数零点个数,已知函数零点求值,与零点相关的比较大小问题,求零点的和,嵌套函数的零点问题,函数零点的综合应用等内容,欢迎下载使用。
这是一份2025高考数学【考点通关】考点归纳与解题策略考点12函数的图象10类常见考点全归纳(精选74题)(原卷版+解析),共93页。试卷主要包含了作图,函数图象的变换,根据实际问题作函数的图象,给出函数确定图象,给出图象确定函数,由函数图象确定参数范围,利用图象研究函数的性质,利用图象解不等式等内容,欢迎下载使用。