|试卷下载
终身会员
搜索
    上传资料 赚现金
    云南昆明长城中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】
    立即下载
    加入资料篮
    云南昆明长城中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】01
    云南昆明长城中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】02
    云南昆明长城中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南昆明长城中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】

    展开
    这是一份云南昆明长城中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )
    A.甲、乙两队身高一样整齐B.甲队身高更整齐
    C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐
    2、(4分)点,,若将线段平移到线段,使点到达点,则点的坐标是( )
    A.B.C.D.
    3、(4分)正比例函数的图像上的点到两坐标轴的距离相等,则( ).
    A.1B.-1C.±1D.±2
    4、(4分)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )
    A.B.C.D.
    5、(4分)如果,下列各式中不正确的是
    A.B.C.D.
    6、(4分)若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( )
    A.12B.10C.8D.11
    7、(4分)已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是( )
    A.y1>y2B.y1<y2C.y1=y2D.不能确定
    8、(4分)如图,在菱形中,对角线、相交于点,,,过作的平行线交的延长线于点,则的面积为( )
    A.22B.24C.48D.44
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.
    10、(4分)数据1,-3,1,0,1的平均数是____,中位数是____,众数是____,方差是___.
    11、(4分)一元二次方程的两根为,,若,则______.
    12、(4分)对任意的两实数,用表示其中较小的数,如,则方程的解是__________.
    13、(4分)若b为常数,且﹣bx+1是完全平方式,那么b=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:
    两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品件,两种商品全部售出可获得利润为万元.
    (1)与的函数关系式为__________________;
    (2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?
    (3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?
    15、(8分)如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的倍,那么称这样的方程为“倍根方程”,例如,一元二次方程的两个根是和,则方程就是“倍根方程”.
    (1)若一元二次方程是“倍根方程”,则= .
    (2)若关于的一元二次方程是“倍根方程”,则,,之间的关系为 .
    (3)若是“倍根方程”,求代数式的值.
    16、(8分)再读教材:
    宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)
    第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.
    第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.
    第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,
    第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,
    问题解决:
    (1)图③中AB=________(保留根号);
    (2)如图③,判断四边形 BADQ的形状,并说明理由;
    (3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
    (4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
    17、(10分)计算:2×÷3﹣(﹣2.
    18、(10分)如图①,点是正方形内一点,,连结,延长交直线于点.
    (1)求证:;
    (2)求证:是等腰三角形;
    (3)若是正方形外一点,其余条件不变,请你画出图形并猜想(1)和(2)中的结论是否仍然成立.(直接写出结论即可).

    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知,是关于的方程的两根,且满足,那么的值为________.
    20、(4分)与最简二次根式3是同类二次根式,则a=_____.
    21、(4分)若关于x的方程无解,则m= .
    22、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.
    23、(4分)一组数据﹣1,0,1,2,3的方差是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正方形ABCD中,O是对角线的交点,AF平分BAC,DHAF于点H,交AC于G,DH延长线交AB于点E,求证:BE=2OG.
    25、(10分)计算:(1—)×+
    26、(12分)问题情境:
    平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直
    线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
    数学探究:
    点C的坐标为______;
    求点E的坐标及直线BE的函数关系式;
    若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
    若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    ∵S甲=1.7,S乙=2.4,
    ∴S甲<S乙,
    ∴甲队成员身高更整齐;
    故选B.
    此题考查方差,掌握波动越小,数据越稳定是解题关键
    2、C
    【解析】
    因为A和C是平移的对应点,根据平移的性质和点B的坐标可得结果.
    【详解】
    解:∵经过平移,A到达C,A(-4,-3),C(1,-1),
    ∴线段AB平移到线段CD是向左平移5个单位,再向上平移2个单位,
    ∵ B(-1,2),
    ∴点D的坐标是(4,4).
    故选C.
    本题考查了图形的平移,掌握平移的性质是解题的关键.
    3、C
    【解析】
    根据题意,正比例函数图象上的点的坐标可设为(a,a)或(a,-a),然后把它们分别代入y=kx可计算出对应的k的值,从而可确定正比例函数解析式.
    【详解】
    ∵正比例函数图象上的点到两坐标轴的距离相等,
    ∴正比例函数图象上的点的坐标可设为(a,a)或(a,-a),
    ∴k•a=a或k•a=-a
    ∴k=1或-1,
    故选C.
    本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx,然后把一组对应值代入求出k,从而得到正比例函数解析式.
    4、C
    【解析】
    观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.
    5、B
    【解析】
    根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.
    【详解】
    、,则,所以选项的结论正确;
    、,则,所以选项的结论错误;
    、,则,所以选项的结论正确;
    、,则,所以选项的结论正确.
    故选.
    本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.
    6、A
    【解析】
    根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.
    【详解】
    设这个多边形是n边形,
    根据题意得,(n﹣2)•180°=5×360°,
    解得n=1.
    故选:A.
    本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.
    7、A
    【解析】
    因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.
    【详解】
    解:∵k=﹣3<0,
    ∴y随x的增大而减小,
    ∵﹣1<2,
    ∴y1>y2 ,
    故选A.
    本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.
    8、B
    【解析】
    先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.
    【详解】
    解:∵AD∥BE,AC∥DE,
    ∴四边形ACED是平行四边形,
    ∴AC=DE=6,
    在RT△BCO中,BO=,即可得BD=8,
    又∵BE=BC+CE=BC+AD=10,
    ∴△BDE是直角三角形,
    ∴S△BDE=.
    故答案为:B.
    此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.
    【详解】
    解:在△ABQ和△EBQ中,

    ∴△ABQ≌△EBQ(ASA),
    ∴BE=AB=5,AQ=QE,
    同理可求CD=AC=7,AP=PD,
    ∴DE=CD-CE=CD-(BC-BE)=2,
    ∵AP=PD,AQ=QE,
    ∴PQ=DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    10、0、 1、 1、 2.4.
    【解析】
    根据平均数、中位数、众数、方差的定义求解即可.
    【详解】
    平均数是:(1-3+1+0+1) ÷5=0;
    中位数是:1;
    众数是:1;
    方差是:=2.4.
    故答案为: 0; 1;1; 2.4
    此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    11、-7
    【解析】
    先用根与系数的关系,确定m、n的和与积,进一步确定a的值,然后将m代入,得到,最后再对变形即会完成解答.
    【详解】
    解:由得:m+n=-5,mn=a,即a=2
    又m是方程的根,则有,
    所以+(m+n)=-2-5=-7
    故答案为-7.
    本题主要考查了一元二次方程的解和多项式的变形,其中根据需要对多项式进行变形是解答本题的关键.
    12、,
    【解析】
    此题根据题意可以确定max(2,2x-1),然后即可得到一个一元二次方程,解此方程即可求出方程的解.
    【详解】
    ①当2x-1>2时,∵max(2,2x-1)=2,
    ∴xmax(2,2x-1)=2x,
    ∴2x=x+1
    解得,x=1,此时2x-1>2不成立;
    ②当2x-1<2时,∵max(2,2x-1)=2x-1,
    ∴xmax(2,2x-1)=2x2-x,
    ∴2x2-x =x+1
    解得,,.
    故答案为:,.
    本题立意新颖,借助新运算,实际考查解一元二次方程的解法.
    13、±1
    【解析】
    根据完全平方式的一般式,计算一次项系数即可.
    【详解】
    解:∵b为常数,且x2﹣bx+1是完全平方式,
    ∴b=±1,
    故答案为±1.
    本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.
    三、解答题(本大题共5个小题,共48分)
    14、(1)w=0.5x+40;(2)10;(3)该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元
    【解析】
    (1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意可得等量关系:公司获得的利润w=甲种商品的利润+乙种商品的利润,根据等量关系可得函数关系式;
    (2)根据资金不多于20万元列出不等式组;
    (3)根据一次函数的性质:k>0时,w随x的增大而增大可得答案.
    【详解】
    解:(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,
    根据题意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),
    整理得:w=0.5x+40;
    故答案为:w=0.5x+40;
    (2)由题意得:12x+8(20﹣x)≤200,解得x≤10,
    故该公司最多购进10台甲种商品;
    (3)∵对于函数w=0.5x+40,w随x的增大而增大,
    ∴当x=10时,能获得最大利润,最大利润为:w=0.5×10+40=45(万元),
    故该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元.
    此题主要考查了一次函数的应用,关键是正确理解题意,找出等量关系,列出函数关系式.
    15、(1);(2);(3)0
    【解析】
    (1)根据“倍根方程”和根与系数之间的关系可直接求解.
    (2)根据题目信息和根与系数的关系找出m,n之间的关系,再对代数式求解.
    (3)根据倍根方程的定义找出m,n之间的关系,进行分类讨论即可求解.
    【详解】
    (1)∵一元二次方程是“倍根方程”
    ∴令2x1=x2,有x1+ x2=3,x1x2=c
    ∴c=2
    (2)设x=m,x=2m是方程的解
    ∴2m+m=-,2m2=
    消去m解得2b2=9ac
    所以,,之间的关系为
    (3)∵是“倍根方程”
    ∴方程的两个根分别为x=2和x=,
    ∴=4或=1,即n=4m或n=m
    当n=4m时,原式为(m-n)(4m-n)=0,
    当n=m时,原式为(m-n)(4m-n)=0,
    ∴代数式=0
    本题属于阅读题型,需要有一定的理解和运用能力,关键是要理清题目的条件,运用所学知识求解.
    16、(1);(2)见解析;(3) 见解析; (4) 见解析.
    【解析】
    分析:(1)由勾股定理计算即可;
    (2)根据菱形的判定方法即可判断;
    (3)根据黄金矩形的定义即可判断;
    (4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.
    详解:(1)如图3中.在Rt△ABC中,AB===.
    故答案为.
    (2)结论:四边形BADQ是菱形.理由如下:
    如图③中,∵四边形ACBF是矩形,∴BQ∥AD.
    ∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.
    (3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.

    ∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.
    ∵BC=2,∴=,∴矩形BCDE是黄金矩形.
    ∵==,∴矩形MNDE是黄金矩形.
    (4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.

    长GH=﹣1,宽HE=3﹣.
    点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.
    17、
    【解析】
    利用二次根式的乘除法则和完全平方公式计算.
    【详解】
    原式=2××× -(2-2+3)-2
    =-1+2-2
    =-1.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    18、(1)详见解析;(2)详见解析;(3)图详见解析,(1)和(2)中的结论仍然成立.
    【解析】
    (1)由等腰三角形的性质可证∠CDE=∠DCE,进而得到,然后根据“SAS”可证;
    (2)由全等三角形的性质可知AE=BE,从而,根据余角的性质可证∠EAF=∠AFE,可证是等腰三角形;
    (3)分点E在CD的右侧和点E在AB的左侧两种情况说明即可.
    【详解】
    (1)证明:∵四边形是正方形,
    ∴AD=BC,.

    ,即;

    (2)证明:,


    ;,
    是等腰三角形.
    (3)(1)和(2)中的结论仍然成立.
    由可知点E只能在CD的右侧或AB的左侧.
    如图,当点E在CD的右侧时,
    ∵四边形是正方形,
    ∴AD=BC,.

    ,即;


    ∵AD//BC,
    ∴∠AFE=∠CBE,


    是等腰三角形.
    如图,当点E在AB的左侧时,同理可证(1)和(2)中的结论仍然成立.
    本题考查了正方形的性质,全等三角形的判定与性质,余角的性质,平行线的性质,以及等腰三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、或
    【解析】
    根据根与系数的关系求出+与·的值,然后代入即可求出m的值.
    【详解】
    ∵,是关于的方程的两根,
    ∴+=2m-2,·=m2-2m,
    代入,得
    m2-2m+2(2m-2)=-1,
    ∴m2+2m-3=0,
    解之得
    m=或.
    故答案为:或.
    本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .
    20、3
    【解析】
    先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于的方程,解出即可.
    【详解】
    解:∵
    与最简二次根式是同类二次根式
    ∴,解得:
    故答案为:
    本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于的方程是解题的关键.
    21、﹣8
    【解析】
    试题分析:∵关于x的方程无解,∴x=5
    将分式方程去分母得:,
    将x=5代入得:m=﹣8
    【详解】
    请在此输入详解!
    22、乙
    【解析】
    方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    【详解】
    解:∵,
    方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    ∴乙最稳定.
    故答案为:乙.
    本题考查了方差,正确理解方差的意义是解题的关键.
    23、1
    【解析】
    这组数据的平均数为:(-1+1+0+1+3)÷5=1,所以方差=[(-1-1)1+(0-1)1+(1-1)1+(1-1)1+(3-1)1]=1.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    分析:作OM∥AB交DE于M.首先证明OM是△DEB的中位线,再根据等角对等边证明OG=OM即可解决问题.
    详解:作OM∥AB交DE于M.
    ∵四边形ABCD是正方形,
    ∴OB=OD,
    ∵OM∥BE,
    ∴EM=DM,
    ∴BE=2OM,
    ∵∠OAD=∠ADO=∠BAC=45°,
    ∵AF平分∠BAC,
    ∴∠EAH=22.5°,
    ∵AF⊥DE,
    ∴∠AHE=∠AHD=90°,
    ∴∠AEH=67.5°,
    ∵∠ADE+∠AED=90°,
    ∴∠ADE=22.5°,
    ∴∠OGD=∠GAD+∠ADE=67.5°,
    ∵∠AEH=∠OME=67.5°,
    ∴∠OGM=∠OMG,
    ∴OG=OM,
    ∴BE=2OG.
    点睛:本题考查了正方形的性质,平行线的性质,等腰三角形的判定,三角形的中位线等知识点,正确作出辅助线,证明OG=OM是解答本题的关键.
    25、
    【解析】
    原式各项化为最简二次根式后,先算乘法后算加减,合并可得到结果.
    【详解】
    解:原式=
    =
    此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.
    26、 (1)(10,6);(2) ), ;(3)见解析.
    【解析】
    (1)根据矩形性质可得到C的坐标;(2)设,由折叠知,,,在中,根据勾股定理得,,,在中,根据勾股定理得,,即,解得,可得;由待定系数法可求直线BE的解析式;(3)存在,理由:由知,,
    ,设,分两种情况分析:当BQ为的对角线时;当BQ为边时.
    【详解】
    解:四边形OBCD是矩形,

    ,,

    故答案为;
    四边形OBCD是矩形,
    ,,,
    设,

    由折叠知,,,
    在中,根据勾股定理得,,

    在中,根据勾股定理得,,



    设直线BE的函数关系式为,



    直线BE的函数关系式为;
    存在,理由:由知,,

    能使以A,B,P,Q为顶点的四边形是平行四边形,

    当BQ为的对角线时,

    点B,P在x轴,
    的纵坐标等于点A的纵坐标6,
    点Q在直线BE:上,



    当BQ为边时,
    与BP互相平分,
    设,



    即:直线BE上是存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形,点或.
    本题考核知识点:一次函数的综合运用. 解题关键点:熟记一次函数性质和特殊平行四边形的性质和判定.
    题号





    总分
    得分
    批阅人
    进价(万元/件)
    售价(万元/件)

    12
    14.5

    8
    10
    选手




    方差(S2)
    0.020
    0.019
    0.021
    0.022
    相关试卷

    新疆师范大附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份新疆师范大附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map