![四川省成都新都区七校联考2024年数学九年级第一学期开学质量检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16292066/0-1729907133765/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省成都新都区七校联考2024年数学九年级第一学期开学质量检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16292066/0-1729907133973/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省成都新都区七校联考2024年数学九年级第一学期开学质量检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16292066/0-1729907133998/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川省成都新都区七校联考2024年数学九年级第一学期开学质量检测试题【含答案】
展开
这是一份四川省成都新都区七校联考2024年数学九年级第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在菱形中, , 是上一点,, 是边上一动点,将四边形沿宜线折叠,的对应点.当的长度最小时,则的长为( )
A.B.C.D.
2、(4分)若,则下列不等式中一定成立的有( )
A.B.
C.D.
3、(4分)如图,在中,,,下列选项正确的是( )
A.B.C.D.
4、(4分)已知一元二次方程,则它的一次项系数为( )
A.B.C.D.
5、(4分)一次函数的图象经过点,且与轴,轴分别交于点、,则的面积是
A.B.1C.D.2
6、(4分)为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE=100米(A,B,E在同一直线上),点C与点D分别在E的两侧(C,E,D在同一直线上),BE⊥CD,CD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为( )米.(参考数据:,)
A.350B.250C.200D.150
7、(4分)下列命题中,真命题是( )
A.相等的角是直角
B.不相交的两条线段平行
C.两直线平行,同位角互补
D.经过两点有且只有一条直线
8、(4分)如图,在中,,若.则正方形与正方形的面积和为( )
A.25B.144C.150D.169
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:____________
10、(4分)有一种细菌的直径约为0.000000054米,将0.000000054这个数用科学记数法表示为____.
11、(4分)如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.
12、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.
13、(4分)已知:,则=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费请你帮他们选择一下,选哪家旅行社比较合算.
15、(8分)在菱形ABCD中,AC是对角线.
(1)如图①,若AB=6,则菱形ABCD的周长为______;若∠DAB=70º,则∠D的度数是_____;∠DCA的度数是____;
(2)如图②,P是AB上一点,连接DP交对角线AC于点E,连接EB,求证: ∠APD=∠EBC.
16、(8分)解方程:=-.
17、(10分)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,那么称点P是线段AB的“附近点”.
(1)请判断点D(4.5,2.5)是否是线段AB的“附近点”;
(2)如果点H (m,n)在一次函数的图象上,且是线段AB的“附近点”,求m的取值范围;
(3)如果一次函数y=x+b的图象上至少存在一个“附近点”,请直接写出b的取值范围.
18、(10分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.
(小海的证法)证明:
是的垂直平分线,
,(第一步)
,(第二步)
.(第三步)
四边形是平行四边形.(第四步)
四边形是菱形. (第五步)
(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.
(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.
(2)请你根据小海的证题思路写出此题的正确解答过程,
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题
(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.
(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.
(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.
20、(4分)如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。
21、(4分)我们把“宽与长的比等于黄金比的矩形称为黄金矩形”,矩形是黄金矩形,且,则__________.
22、(4分)如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.
23、(4分)如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________
二、解答题(本大题共3个小题,共30分)
24、(8分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.
(1)请你写出这个定理的逆命题是________;
(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.
25、(10分)某学校为了美化绿化校园,计划购买甲,乙两种花木共100棵绿化操场,其中甲种花木每棵60元,乙种花木每棵80元.
(1)若购买甲,乙两种花木刚好用去7200元,则购买了甲,乙两种花木各多少棵?
(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.
26、(12分)计算:
(1).
(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H,先求得BH、HC的长,则可得到PH的长,然后再求得PC的长,最后依据折叠的性质和平行线的性质可证明△CQP为等腰三角形,则可得到QC的长.
【详解】
由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H.
在Rt△BCH中,∠B=60°,BC=16,则
BH=BC=8,CH= =8.
∴PH=1.
在Rt△CPH中,依据勾股定理可知:PC==2.
由翻折的性质可知:∠APQ=∠A′PQ.
∵DC∥AB,
∴∠CQP=∠APQ.
∴∠CQP=∠CPQ.
∴QC=CP=2.
故选:D.
本题主要考查的是两点之间线段最短、菱形的性质、勾股定理的应用,翻折的性质、等腰三角形的判定,判断出CA′取得最小值的条件是解题的关键.
2、C
【解析】
根据不等式的性质,两边同时除以5进行计算,判断出结论成立的是哪个即可.
【详解】
解:∵5x>-5y,
∴x>-y,
∴x+y>0
故选:C.
此题主要考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
3、A
【解析】
通过证明△ADE∽△ABC,由相似三角形的性质可求解.
【详解】
解:∵DE∥BC,
∴△ADE∽△ABC
∴
故选:A.
本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.
4、D
【解析】
根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.
【详解】
解:一元二次方程,则它的一次项系数为-2,
故选:D.
此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).
5、C
【解析】
由一次函数y=−3x+m的图象经过点P(−2,3),可求m得值,确定函数的关系式,进而可求出与x轴,y轴分别交于点A、B的坐标,从而知道OA、OB的长,可求出△AOB的面积.
【详解】
解:将点P(−2,3)代入一次函数y=−3x+m得:3=6+m,
∴m=−3
∴一次函数关系式为y=−3x−3,
当x=0时,y=−3;
当y=0是,x=−1;
∴OA=1,OB=3,
∴S△AOB=×1×3=,
故选:C.
考查一次函数图象上点的坐标特征,以及一次函数的图象与x轴、y轴交点坐标求法,正确将坐标与线段的长的相互转化是解决问题的前提和基础.
6、B
【解析】
设AB=x米,则AE=(100+x)米,然后利用特殊角的三角函数值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.
【详解】
设AB=x米,则AE=(100+x)米,
在Rt△AED中,
∵ ,
则DE==(100+x),
在Rt△AEC中,∠C=45°,
∴CE=AE=100+x,
由题意得,(100+x)+(100+x)=1000,
解得x=250,
即AB=250米,
故选:B.
本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.
7、D
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解: A,不正确,因为相等的角也可能是锐角或钝角;
B,不正确,因为前提是在同一平面内;
C,不正确,因为两直线平行,同位角相等;
D,正确,因为两点确定一条直线.
故选D.
本题考查命题与定理.
8、D
【解析】
根据勾股定理求出AC2+BC2,根据正方形的面积公式进行计算即可.
【详解】
在Rt△ABC中,AC2+BC2=AB2=169,
则正方形与正方形的面积和= AC2+BC2 =169,
故选D.
本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、a(x+5)(x-5)
【解析】
先公因式a,然后再利用平方差公式进行分解即可.
【详解】
故答案为a(x+5)(x-5).
10、
【解析】
绝对值
相关试卷
这是一份2025届浙江省杭州拱墅区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届四川省成都市新都区九年级数学第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届四川省成都高新区四校联考九年级数学第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)