四川省成都市青羊区成都石室中学2025届数学九年级第一学期开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列多项式中,分解因式不正确的是( )
A.a2+2ab=a(a+2b)B.a2-b2=(a+b)(a-b)
C.a2+b2=(a+b)2D.4a2+4ab+b2=(2a+b)2
2、(4分)有位同学参加歌咏比赛,所得的分数互不相同,取得分前位同学进入决赛,小明知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学得分的( )
A.平均数B.中位数C.众数D.方差
3、(4分)下列计算错误的是( )
A. =2B.=3C.÷=3D.=1﹣=
4、(4分)将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )
A.B.C.D.
5、(4分)如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ).
A.B.C.D.
6、(4分)矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为( )
A.12B.24C.48D.50
7、(4分)若关于x的方程有两个相等的实数根,则常数c的值是
A.6B.9C.24D.36
8、(4分)如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是( )
A.AD=BCB.AC=BD
C.AB∥CDD.∠BAC=∠DCA
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形ABCD中,过点C作CEBC交对角线BD 于点 E ,若ECD20 ,则ADB____________.
10、(4分)计算: =_________.
11、(4分)若分式的值为0,则x的值是_____.
12、(4分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____
13、(4分)已知一次函数y=x+4的图象经过点(m,6),则m=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,AD是BC边上的中线,E是AD的中点,延长BE到F,使,连接AF、CF、DF.
求证:;
若,试判断四边形ADCF的形状,并证明你的结论.
15、(8分)如图,在平行四边形中,连接,,且,是的中点,是延长线上一点,且.求证:.
16、(8分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)求A,B两型桌椅的单价;
(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;
(3)求出总费用最少的购置方案.
17、(10分)按要求解不等式(组)
(1)求不等式的非负整数解.
(2)解不等式组,并把它的解集在数轴上表示出来.
18、(10分)解方程.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,直线y=4x+4与x、y轴分别相交于点A、B,四边形ABCD是正方形,抛物线过C,D两点,且C为顶点,则a的值为_______.
20、(4分)如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.
21、(4分)已知:一次函数的图像在直角坐标系中如图所示,则______0(填“>”,“<”或“=”)
22、(4分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:
这20户家庭日用电量的众数、中位数分别是( )
A.6,6.5B.6,7C.6,7.5D.7,7.5
23、(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图:在▱ABCD中,E、F分别为对角线BD上的点,且BE=DF,判断四边形AECF的形状,并说明理由.
25、(10分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,在现有网格中,以格点为顶点,分别按下列要求画三角形。
(1)在图1中,画一个等腰直角三角形,使它的面积为5;
(2)在图2中,画一个三角形,使它的三边长分别为3,2 , ;
(3)在图3中,画一个三角形,使它的三边长都是有理数.
26、(12分)已知抛物线,与轴交于、,
(1)若,时,求线段的长,
(2)若,时,求线段的长,
(3)若一排与形状相同的抛物线在直角坐标系上如图放置,且每相邻两个的交点均在轴上,,若之间有5个它们的交点,求的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
各项分解得到结果,即可作出判断.
【详解】
解:A、原式=a(a+2b),不符合题意;
B、原式=(a+b)(a-b),不符合题意;
C、原式不能分解,符合题意;
D、原式=(2a+b)2,不符合题意,
故选:C.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知9人成绩的中位数是第5名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于9个人中,第5名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,需知道这9位同学的分数的中位数.
故选:B.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
3、D
【解析】
分析:根据二次根式的化简及计算法则即可得出答案.
详解:A、 =2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.
点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.
4、D
【解析】
由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.
【详解】
解:,即抛物线的顶点坐标为,
把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,
所以平移后得到的抛物线解析式为.
故选D.
本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
5、A
【解析】
根据题意可得菱形的两对角线长分别为4cm,5cm,根据面积公式求出菱形的面积.
【详解】
由题意知,AC的一半为2cm,BD的一半为2.5cm,则AC=4cm,BD=5cm,
∴菱形的面积为4×5÷2=10cm².
故选A.
本题考查了菱形的性质,解题的关键是掌握对角线平分且垂直的菱形的面积等于对角线积的一半.
6、C
【解析】
设矩形的两邻边长分别为3x、4x,根据勾股定理可得(3x)2+(4x)2=102,解方程求得x的值,即可求得矩形两邻边的长,根据矩形的面积公式即可求得矩形的面积.
【详解】
∵矩形的两邻边之比为3:4,
∴设矩形的两邻边长分别为:3x,4x,
∵对角线长为10,
∴(3x)2+(4x)2=102,
解得:x=2,
∴矩形的两邻边长分别为:6,8;
∴矩形的面积为:6×8=1.
故选:C.
本题考查了矩形的性质及勾股定理,利用勾股定理求得矩形两邻边的长是解决问题的关键.
7、B
【解析】
根据判别式的意义得到△=62-4c=0,然后解关于c的一次方程即可.
【详解】
∵方程x2+6x+c=0有两个相等的实数根,
∴△=62-4×1×c=0,
解得:c=9,
故选B.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
8、B
【解析】
解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;
B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;
C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;
D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、35°
【解析】
由已知条件可知:∠BCD=110°,根据菱形的性质即可求出ADB的度数.
【详解】
∵CEBC,ECD20,
∴∠BCD=110°,
∵四边形ABCD是菱形,∴∠BCD+∠ADC=180°,∠ADB=,
∴∠ADC=70°,∴∠ADB==35°,
本题考查了菱形的性质,牢记菱形的性质是解题的关键.
10、
【解析】
先利用二次根式的性质,再判断的大小去绝对值即可.
【详解】
因为,
所以
故答案为:
此题考查的是二次根式的性质和去绝对值.
11、-2
【解析】
根据分子等于零且分母不等于零列式求解即可.
【详解】
解:由分式的值为2,得
x+2=2且x﹣2≠2.
解得x=﹣2,
故答案为:﹣2.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.
12、2
【解析】
根据方程的系数结合根的判别式,即可得出△=20-2m≥0,解之即可得出m的取值范围.由根与系数的关系可得x1+x2=6①、x1•x2=m+2②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=-x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.
【详解】
∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,
∴△=(﹣6)2﹣2(m+2)=20﹣2m≥0,
解得:m≤1,
∴m的取值范围为m≤1.
∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,
∴x1+x2=6①,x1•x2=m+2②.
∵3x1=|x2|+2,
当x2≥0时,有3x1=x2+2③,
联立①③解得:x1=2,x2=2,
∴8=m+2,m=2;
当x2<0时,有3x1=﹣x2+2④,
联立①④解得:x1=﹣2,x2=8(不合题意,舍去).
∴符合条件的m的值为2.
故答案是:2.
本题考查了根与系数的关系以及一元二次方程的解,熟练掌握根与系数的关系公式:,是解题的关键.
13、1
【解析】
试题分析:直接把点(m,6)代入一次函数y=x+4即可求解.
解:∵一次函数y=x+4的图象经过点(m,6),
∴把点(m,6)代入一次函数y=x+4得
m+4=6
解得:m=1.
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)四边形AFCD是菱形
【解析】
(1)只要证明四边形ABDF是平行四边形即可;
(2)结论:四边形AFCD是菱形.首先证明四边形ADCD是平行四边形,再证明DA=DC即可.
【详解】
(1),,
四边形ABDF是平行四边形,
;
结论:四边形ADCF是菱形,理由如下:
,
,
,
,
四边形ABDF是平行四边形,
,,
,
四边形AFCD是平行四边形,
,
四边形AFCD是菱形.
本题考查了平行四边形的判定与性质、菱形的判定、直角三角形斜边中线等,熟练掌握相关的性质与定理是解题的关键.
15、证明步骤见解析
【解析】
过E分别做CF和DC延长线的垂线,垂足分别是G,H,利用HL证明Rt△FGE≌Rt△DHE,得到∠GFE=∠EDH,再根据三角形内角和得出∠FED=∠FCD=90°,即证明.
【详解】
解:如图,过E分别做CF和DC延长线的垂线,垂足分别是G,H,
∵AC=CD,AC⊥CD,
∴∠CAD=∠CDA=∠ACB=∠BCH=45°,
∵EG⊥CF,EH⊥CH,
∴EH=EG,
∵DE=EF,
∴Rt△FGE≌Rt△DHE(HL),
∴∠GFE=∠EDH,
∵∠FME=∠DMC
∴∠FED=∠FCD=90°,
∴EF⊥ED.
本题考查了全等三角形的判定和性质,三角形内角和,中等难度,证明三角形全等是解题关键.
16、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.
【解析】
(1)根据“2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元”,建立方程组即可得出结论;
(2)根据题意建立函数关系式,由A型桌椅不少于120套,B型桌椅不少于70套,确定出x的范围;
(3)根据一次函数的性质,即可得出结论.
【详解】
(1)设A型桌椅的单价为a元,B型桌椅的单价为b元,
根据题意知,,
解得,,
即:A,B两型桌椅的单价分别为600元,800元;
(2)根据题意知,y=600x+800(200﹣x)+200×10=﹣200x+162000(120≤x≤130),
(3)由(2)知,y=﹣200x+162000(120≤x≤130),
∴当x=130时,总费用最少,
即:购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.
本题考查一次函数的应用,二元一次方程的应用,一元一次不等式组的应用,读懂题意,列出方程组或不等式是解本题的关键.
17、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析
【解析】
(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
(1)5(2x+1)≤3(3x-2)+15,
10x+5≤9x-6+15,
10x-9x≤-6+15-5,
x≤4,
则不等式的非负整数解为1、2、3、4;
(2)解不等式2(x-3)<4x,得:x>-3,
解不等式,得:x≤1,
则不等式组的解集为-3<x≤1,
将不等式组的解集表示在数轴上如下:
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
18、原分式方程无解.
【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
【详解】
方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
即:x2+2x﹣x2﹣x+2=3
整理,得x=1
检验:当x=1时,(x﹣1)(x+2)=0,
∴原方程无解.
本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,利用三角形全等,求出点C、点D和点F坐标即可解决问题.
【详解】
解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F.
∵直线y=-1x+1与x轴、y轴分别交于A、B两点,
∴点B(0,1),点A(1,0),△ABO≌△DAM
∵四边形ABCD是正方形,
∴AB=AD=DC=BC,∠BAD=90°,
∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,
∴∠ABO=∠DAM,
在△ABO和△DAM中,
,
∴△ABO≌△DAM,
∴AM=BO=1,DM=AO=1,
同理可以得到:CF=BN=AO=1,DF=CN=BO=1,
∴点F(5,5),C(1,5),D(5,1),
把C(1,1),D(5,1)代入得:
,解得:b=-9a-1,
∵C为顶点, ∴,即 ,解得:a=-1.
故答案为-1.
本题考查二次函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.
20、1
【解析】
根据直角三角形斜边上的中线是斜边的一半可以解答本题.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,
∴∠CDA=90°,△ADC是直角三角形,
∴AC=2DE,
∵DE=5,
∴AC=1,
故答案为:1.
本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.
21、>
【解析】
根据图像与y轴的交点可知b<0,根据y随x的增大而减小可知k<0,从而根据乘法法则可知kb>0.
【详解】
∵图像与y轴的交点在负半轴上,
∴b<0,
∵y随x的增大而减小,
∴k<0,
∴kb>0.
故答案为>.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.
22、A
【解析】
【分析】结合统计表数据,根据众数和中位数的定义可以求出结果.
【详解】从统计表中看出,6出现次数最多,故众数是6;第10和11户用电量的平均数是中位数.即:
故选:A
【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.
23、1
【解析】
先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.
【详解】
解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,
∴多边形的内角和是900﹣360=140°,
∴多边形的边数是:140°÷180°+2=3+2=1.
故答案为:1.
本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2) ×180°, n边形的外角和为:360°.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
分析:
如下图,连接AC,由已知条件易得:OA=OC、OB=OD,结合BE=DF可得OE=OF,由此可得四边形AECF是平行四边形.
详解:
连接AC,与BD相交于O,如图所示:
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵BE=DF,
∴OE=OF,
∴AC与EF互相平分,
∴四边形AECF为平行四边形.
点睛:熟记:“平行四边形的对角线互相平分和对角线互相平分是四边形是平行四边形”是解答本题的关键.
25、(1)详见解析;(2)详见解析;(3)详见解析;
【解析】
(1)画一个边长为 的直角三角形即可;
(2)利用勾股定理画出三角形即可;
(3)画一个三边长为3,4,5的三角形即可.
【详解】
(1)如图所示;
(2)如图所示;
(3)如图所示.
此题考查勾股定理,作图—应用与设计作图,解题关键在于掌握作图法则.
26、(1)6;(2)6;(3)
【解析】
(1)将,代入,求出与x轴两个交点的的横坐标,即可确定AB的长.
(2)将,代入,化简得y,令y=0,求出与x轴两个交点的的横坐标,即可确定AB的长.
(3)令,解得,然后确定AB的长,再根据之间有5个交点,列出不等式,求解不等式即可.
【详解】
解:(1)∵,,
∴,
令,
得,,
∴.
(2),时,
令,
,,
∴,
∴线段的长为6.
(3)令,
,
,
此时的长,
∵之间有5个交点,
∴,
∴.
本题考查了二次函数与x轴交点及交点间的距离,解题的关键在于认真分析,逐步解答,才会发现解答思路.
题号
一
二
三
四
五
总分
得分
批阅人
四川省成都市青羊区石室联中学2025届九上数学开学达标检测试题【含答案】: 这是一份四川省成都市青羊区石室联中学2025届九上数学开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省成都市青羊区石室教育集团2025届九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份四川省成都市青羊区石室教育集团2025届九年级数学第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届成都市青羊区数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2025届成都市青羊区数学九年级第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。