![山东省东平县第三中学2025届九上数学开学检测模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16287940/0-1729810563251/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省东平县第三中学2025届九上数学开学检测模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16287940/0-1729810563306/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省东平县第三中学2025届九上数学开学检测模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16287940/0-1729810563339/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省东平县第三中学2025届九上数学开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是( )
A.12cm2B.24cm2C.36cm2D.48cm2
2、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
则该二次函数图象的对称轴为( )
A.y轴B.直线x=C.直线x=1D.直线x=
3、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.,,B.6,8,10C.7,24,25D.,3,5
4、(4分)与可以合并的二次根式是( )
A.B.C.D.
5、(4分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )
A.90°B.60°C.120°D.45°
6、(4分)若分式有意义,则x应满足的条件是( )
A.B.C.D.
7、(4分)一次函数y=kx-k(k<0)的图象大致是( )
A.B.C.D.
8、(4分)如图,在正方形中,点是的中点,点是的中点,与相交于点,设.得到以下结论:
①;②;③则上述结论正确的是( )
A.①②B.①③
C.②③D.①②③
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,等腰直角△ABC中,∠BAC=90°,BC=6,过点C作CD⊥BC,CD=2,连接BD,过点C作CE⊥BD,垂足为E,连接AE,则AE长为_____.
10、(4分)如图,直线经过点,当时,的取值范围为__________.
11、(4分)菱形ABCD的对角线cm,,则其面积等于______.
12、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。
13、(4分)在平面直角坐标系中,点到坐标原点的距离是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。
(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。
(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。
(3)若点P是此平面直角坐标系内的一点,当点A、 B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。
15、(8分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.
(1)若∠F=62°,求∠D的度数;
(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.
16、(8分)已知:在平面直角坐标系中有两条直线y=﹣1x+3和y=3x﹣1.
(1)确定这两条直线交点所在的象限,并说明理由;
(1)求两直线与坐标轴正半轴围成的四边形的面积.
17、(10分)把下列各式因式分解:
(1)(x2﹣9)+3x(x﹣3)
(2)3ax2+6axy+3ay2
18、(10分)如图,已知直线AQ与x轴负半轴交于点A,与y轴正半轴交于点Q,∠QAO=45°,直线AQ在y轴上的截距为2,直线BE:y=-2x+8与直线AQ交于点P.
(1)求直线AQ的解析式;
(2)在y轴正半轴上取一点F,当四边形BPFO是梯形时,求点F的坐标.
(3)若点C在y轴负半轴上,点M在直线PA上,点N在直线PB上,是否存在以Q、C、M、N为顶点的四边形是菱形,若存在请求出点C的坐标;若不存在请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.
20、(4分)如图,在平面直角坐标系中,已知顶点的坐标分别为,且是由旋转得到.若点在上,点在轴上,要使四边形为平行四边形,则满足条件的点的坐标为______.
21、(4分)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.
22、(4分)分解因式:2x2-8x+8=__________.
23、(4分)方程x2=x的解是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?
25、(10分)如图,在四边形ABCD中,AD⊥CD,BC⊥CD,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F。
证明:(1)FC=AD;
(2)AB=BC+AD。
26、(12分)函数y=mx+n与y=nx的大致图象是( )
A.B.
C.D.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形,由菱形的性质以及勾股定理求出对角线CD的长,代入菱形面积公式即可求解.
【详解】
如图:
∵分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,
∴AC=AD=BD=BC=5cm,
∴四边形ADBC是菱形,
∴AB⊥CD,AO=OB=4cm,CD=2OC,
∴由勾股定理得:OC=3cm,
∴CD=6cm,
∴四边形ADBC的面积=AB•CD=×8×6=24cm2,
故选:B.
此题主要考查了线段垂直平分线的性质以及菱形的判定和性质,得出四边形四边关系是解决问题的关键.
2、D
【解析】
观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x= .故选D.
3、A
【解析】
勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.
【详解】
∵()2+()2=7≠()2,∴,,不能作为直角三角形的三边长.故选A.
本题属于基础应用题,只需熟练掌握勾股定理的逆定理,即可完成.
4、C
【解析】
先对各个选项中的二次根式化简为最简二次根式(被开方数中不含分母且被开方数中不含有开得尽方的因数或因式),再在其中找的同类二次根式(化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式.).
【详解】
A. 为最简二次根式,且与不是同类二次根式,故错误;
B. = -3,与不是同类二次根式,故错误;
C. ,与是同类二次根式,故正确;
D. 为最简二次根式,且与不是同类二次根式,故错误.
故选C.
本题考查二次根式的加减,能将各个选项中根式化简为最简二次根式,并能找对同类二次根式是本题的关键.
5、D
【解析】
首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.
【详解】
解:∵平行四边形中两个内角的度数之比为1:3,
∴设平行四边形中两个内角分别为x°,3x°,
∴x+3x=180,
解得:x=45,
∴其中较小的内角是45°.
故选D.
本题考查了平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.
6、A
【解析】
本题主要考查分式有意义的条件:分母不能为0
【详解】
解:∵x-2≠0,
∴x≠2,
故选:A.
本题考查的是分式有意义的条件,当分母不为0时,分式有意义.
7、A
【解析】
试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.
解:∵k<0,
∴﹣k>0,
∴一次函数y=kx﹣k的图象经过第一、二、四象限,
故选A.
考点:一次函数的图象.
8、D
【解析】
由正方形的性质和全等三角形的判定与性质,直角三角形的性质进行推理即可得出结论.
【详解】
解:如图,
(1)
所以①成立
(2)如图延长交延长线于点,
则:
∴为直角三角形斜边上的中线,是斜边的一半,即
所以②成立
(3) ∵
∴
∵
∴
所以③成立
故选:D
本题考查的正方形的性质,直角三角形的性质以及全等三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分析:根据旋转的性质得到△ABF≌△ACE,进而得出△AEF为等腰直角三角形,根据两角对应相等的两三角形相似的判定可得△BCD∽△BEC,然后根据对应边成比例可得,然后根据勾股定理即可求解.
详解:把AE逆时针旋转90°,使AE=AF交BD于F,
根据旋转的性质可得△ABF≌△ACE,
即BF=CE,
∴△AEF是等腰直角三角形
∵CD⊥BC,CE⊥BD
∴∠BCD=∠CEB=90°
∵∠DBC=∠CBD,
∴△BCD∽△BEC
∴
∵BC=6,CD=2
∴BD==
即CE=
∴DE=
即BE=
∴EF=——=
∴AE=AF=
故答案为:.
点睛:此题主要考查了旋转变化的性质,等腰三角形的性质,相似三角形的判定与性质,勾股定理等知识,此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.
10、
【解析】
根据题意结合图象首先可得的图象过点A,因此便可得的解集.
【详解】
解:∵正比例函数也经过点,
∴的解集为,
故答案为:.
本题主要考查函数的不等式的解,关键在于根据图象来判断,这是最简便的解题方法.
11、
【解析】
根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。
【详解】
解:菱形ABCD的面积=
=
=
本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。
12、
【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.
【详解】
∵四边形OABC是矩形,
∴∠B=90°,
∵BD=BE=1,
∴∠BED=∠BDE=45°,
∵沿直线DE将△BDE翻折,点B落在点B′处,
∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,
∴∠BEB′=∠BDB′=90°,
∵点B的坐标为(3,2),
∴点B′的坐标为(2,1).
故答案为:(2,1).
此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形
13、5
【解析】
根据勾股定理解答即可.
【详解】
点P到原点O距离是.
故答案为:5
此题考查勾股定理,关键是根据勾股定理得出距离.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析;(3)(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
【解析】
(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′,从而得到线段A′B′;
(2)利用关于y轴对称的点的坐标特征写出A″、B″点的坐标,然后描点即可得到线段A″B″;
(3)分别以AB″、AB′和B″B′为对角线画平行四边形,从而得到P点位置,然后写出对应点的坐标.
【详解】
(1)如图,线段A′B′为所作;
(2)如图,线段A″B″为所作;
(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
此题考查作图-轴对称变换,平行四边形的性质,作图-旋转变换,解题关键在于掌握作图法则.
15、(1)(2)
【解析】
(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;
(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAF=∠F=62°,
∵AB=BE,
∴∠AEB=∠BAE=62°,
∴∠B=180°-∠BAE-∠AEB=56°,
∵在平行四边形ABCD中,∠D=∠B,
∴∠D=56°.
(2)∵DC∥AB,
∴△CEF∽△BEA.
∵BE=3EC
∴,
∵S△EFC=1.
∴S△ABE=9a,
∵
∴
∴
∴
∵
∴
此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.
16、 (1)两直线交点坐标为(1,1),在第一象限;(1).
【解析】
(1)联立两直线解析式成方程组,解方程组即可求出交点坐标,进而即可得出交点所在的象限;
(1)令直线y=﹣1x+3与x、y轴分别交于点A、B,直线y=3x﹣1与x、y轴分别交于点C、D,两直线交点为E,由直线AB、CD的解析式即可求出点A、B、C的坐标,利用分割图形求面积法结合三角形的面积公式即可求出两直线与坐标轴正半轴围成的四边形的面积.
【详解】
(1)联立两直线解析式得:,
解得:,
∴两直线交点坐标为(1,1),在第一象限.
(1)令直线y=﹣1x+3与x、y轴分别交于点A、B,直线y=3x﹣1与x、y轴分别交于点C、D,两直线交点为E,如图所示.
令y=﹣1x+3中x=0,则y=3,
∴B(0,3);
令y=﹣1x+3中y=0,则x=,
∴A(,0).
令y=3x﹣1中y=0,则x=,
∴C(,0).
∵E(1,1),
∴S四边形OCEB=S△AOB﹣S△ACE=OA•OB﹣AC•yE=××3﹣×(﹣)×1=.
此题考查两条直线相交或平行问题,联立直线解析式成方程组求出交点
17、 (1) (x﹣3)(4x+3);(1) 3a(x+y)1.
【解析】
(1)原式利用平方差公式变形,再提取公因式即可;
(1)原式提取公因式,再利用完全平方公式分解即可.
【详解】
(1)原式=(x+3)(x﹣3)+3x(x﹣3)=(x﹣3)(4x+3);
(1)原式=3a(x1+1xy+y1)=3a(x+y)1.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
18、(1)直线AQ的解析式为y=x+2;(2)F(0,4);(3)存在,C(0,)或C(0,-10)
【解析】
(1)利用待定系数法即可求出直线AQ的解析式;
(2)先求出直线AQ和直线BE的交点P的坐标,由PF∥x轴可知F横坐标为0,纵坐标与点P的纵坐标相等;
(3)分CQ为菱形的对角线与CQ是菱形的一条边两种情况讨论.
【详解】
解:(1)设直线AQ的解析式为y=kx+b,
∵直线AQ在y轴上的截距为2,
∴b=2,
∴直线AQ的解析式为y=kx+2,
∴OQ=2,
在Rt△AOQ中,∠OAQ=45°,
∴OA=OQ=2,
∴A(-2,0),
∴-2k+2=0,
∴k=1,
∴直线AQ的解析式为y=x+2;
(2)由(1)知,直线AQ的解析式为y=x+2①,
∵直线BE:y=-2x+8②,
联立①②解得,
∴P(2,4),
∵四边形BPFO是梯形,
∴PF∥x轴,
∴F(0,4);
(3)设C(0,c),
∵以Q、C、M、N为顶点的四边形是菱形,
①当CQ是对角线时,CQ与MN互相垂直平分,
设C(0,c),
∵CQ的中点坐标为(0,),
∴点M,N的纵坐标都是,
∴M(,),N(,),
∴+=0,
∴c=-10,
∴C(0,-10),
②当CQ为边时,CQ∥MN,CQ=MN=QM,
设M(m,m+2),
∴N(m,-2m+8),
∴|3m-6|=2-c=|m|,
∴m=或m=,
∴c=或c=(舍),
∴,
∴(0,)或C(0,-10).
本题是一道一次函数与四边形的综合题,难度较大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-3, 1
【解析】
根据两直线平行,得到k=-3,然后把(1,2)代入y=-3x+b中,可计算出b的值.
【详解】
∵直线y=kx+b与直线y=-3x+4平行,
∴k=-3,
∵直线y=-3x+b过点(1,2),
∴1×(-3)+b=2,
∴b=1.
故答案为:-3;1.
本题主要考查两平行直线的函数解析式的比例系数关系,掌握若两条直线是平行的关系,那么它们的函数解析式的自变量系数相同,是解题的关键.
20、 (−1.5,2)或(−3.5,−2)或(−0.5,4).
【解析】
要使以为顶点的四边形是平行四边形,则PQ=AC=2,在直线AB上到x轴的距离等于2 的点,就是P点,因此令y=2或−2求得x的值即可.
【详解】
∵点Q在x轴上,点P在直线AB上,以为顶点的四边形是平行四边形,
当AC为平行四边形的边时,
∴PQ=AC=2,
∵P点在直线y=2x+5上,
∴令y=2时,2x+5=2,解得x=−1.5,
令y=−2时,2x+5=−2,解得x=−3.5,
当AC为平行四边形的对角线时,
∵AC的中点坐标为(3,2),
∴P的纵坐标为4,
代入y=2x+5得,4=2x+5,
解得x=−0.5,
∴P(−0.5,4),
故P为(−1.5,2)或(−3.5,−2)或(−0.5,4).
故答案为:(−1.5,2)或(−3.5,−2)或(−0.5,4).
此题考查坐标与图形变化-旋转,解题关键在于掌握性质的性质
21、140°
【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,
∴EF是△ABD的中位线,
∴EF∥BD,BD=2EF=12,
∴∠ADB=∠AFE=50°,
∵BC=15,CD=9,BD=12,
∴BC2=225,CD2=81,BD2=144,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
故答案为:140°.
22、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
23、x1=0,x2=1
【解析】
利用因式分解法解该一元二次方程即可.
【详解】
解:x2=x,
移项得:x2﹣x=0,
分解因式得:x(x﹣1)=0,
可得x=0或x﹣1=0,
解得:x1=0,x2=1.
故答案为:x1=0,x2=1
本题考查了解一元二次方程,熟练掌握因式分解法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)与x的函数关系式为=1100x;与x的函数关系式为=1200x-20000;(2)该月生产甲、乙两种塑料分别为300吨和2吨时总利润最大,最大总利润是790000元.
【解析】
(1)因为利润=总收入﹣总支出,由表格可知,y1=(2100﹣800﹣200)x=1100x,y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
(2)可设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,建立W与x之间的解析式,又因甲、乙两种塑料均不超过2吨,所以x≤2,700﹣x≤2,这样就可求出x的取值范围,然后再根据函数中y随x的变化规律即可解决问题.
【详解】
详解:(1)依题意得:y1=(2100﹣800﹣200)x=1100x,
y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
(2)设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,依题意得:W=1100x+1200(700﹣x)﹣20000=﹣100x+1.
∵,
解得:300≤x≤2.
∵﹣100<0,
∴W随着x的增大而减小,
∴当x=300时,W最大=790000(元).
此时,700﹣x=2(吨).
因此,生产甲、乙塑料分别为300吨和2吨时总利润最大,最大利润为790000元.
本题需仔细分析表格中的数据,建立函数解析式,值得一提的是利用不等式组求自变量的取值范围,然后再利用函数的变化规律求最值这种方法.
25、(1)见解析;(2)见解析
【解析】
(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.
(2)根据线段垂直平分线的性质判断出AB=BF即可.
【详解】
(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,
,
∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).
此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
26、D
【解析】
当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;
当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;
当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;
当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.
综上,A,B,C错误,D正确
故选D.
考点:一次函数的图象
题号
一
二
三
四
五
总分
得分
批阅人
x
﹣1
0
1
2
3
y
5
1
﹣1
﹣1
1
出厂价
成本价
排污处理费
甲种塑料
2100(元/吨)
800(元/吨)
200(元/吨)
乙种塑料
2400(元/吨)
1100(元/吨)
100(元/吨)
另每月还需支付设备管理、维护费20000元
山东省安丘市东埠中学2025届九上数学开学检测模拟试题【含答案】: 这是一份山东省安丘市东埠中学2025届九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
宁夏中学宁县2025届九上数学开学检测模拟试题【含答案】: 这是一份宁夏中学宁县2025届九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省菏泽单县联考数学九上开学检测模拟试题【含答案】: 这是一份2025届山东省菏泽单县联考数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。