山东省寿光市实验中学2024年数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是
A.B.C.D.
2、(4分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )
A.B.C.D.
3、(4分)用反证法证明命题“四边形中至少有一个角不小于直角”时应假设( )
A.没有一个角大于直角 B.至多有一个角不小于直角
C.每一个内角都为锐角 D.至少有一个角大于直角
4、(4分)若分式的值为5,则x、y扩大2倍后,这个分式的值为( )
A.B.5C.10D.25
5、(4分)如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是( )
A.∠DAC=∠ABCB.AC是∠BCD的平分线C.AC2=BC•CDD.
6、(4分)若一个多边形的内角和为外角和的3倍,则这个多边形为 ( )
A.八边形B.九边形C.十边形D.十二边形
7、(4分)在下列长度的各组线段中,能构成直角三角形的是( )
A.3,5,9B.4,6,8C.13,14,15D.8,15,17
8、(4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)要使分式有意义,则应满足的条件是
10、(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
11、(4分)如图,□的顶点的坐标为,在第一象限反比例函数和的图象分别经过两点,延长交轴于点. 设是反比例函数图象上的动点,若的面积是面积的2倍,的面积等于,则的值为________。
12、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.
13、(4分)张老师公布班上6名同学的数学竞赛成绩时,有意公布了5个人的得分:78,92,61,85,75,又公布了6个人的平均分:80,还有一个未公布,这个未公布的得分是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,正方形中,是边上一点,,,垂足分别是点、.
(1)求证:;
(2)连接,若,,求的长.
15、(8分)先化简再求值:,其中m是方程的解.
16、(8分)如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.
17、(10分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
18、(10分)如图,已知点A、B、C、D的坐标分别为(-2,2),(一2,1),(3,1),(3,2),线段AD、AB、BC组成的图形记作G,点P沿D-A-B-C移动,设点P移动的距离为a,直线l:y=-x+b过点P,且在点P移动过程中,直线l随点P移动而移动,若直线l过点C,求
(1)直线l的解析式;
(2)求a的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线过第_________象限,且随的增大而_________.
20、(4分)在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.
21、(4分)如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x
23、(4分)若有意义,则x 的取值范围是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.
(小海的证法)证明:
是的垂直平分线,
,(第一步)
,(第二步)
.(第三步)
四边形是平行四边形.(第四步)
四边形是菱形. (第五步)
(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.
(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.
(2)请你根据小海的证题思路写出此题的正确解答过程,
25、(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:四边形PBQD是平行四边形;
(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向D运动(不与D重合),设点P运动时间为t秒.
①请用t表示PD的长;②求t为何值时,四边形PBQD是菱形.
26、(12分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
【详解】
根据中位数的概念,可知这组数据的中位数为:21
故答案选:C
本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.
2、B
【解析】
观察所给程序的运算过程,根据前两次运算结果小于或等于95、第三次运算结果大于95,列出关于x的不等式组;先求出不等式组中三个不等式的解集,再取三个不等式的解集的公共部分,即为不等式组的解集.
【详解】
由题意可得
,
解不等式①得,x≤47,
解不等式②得,x≤1,
解不等式③得,x>11,
故不等式组的解集为11<x≤1.
故选B.
此题考查一元一次不等式的应用,关键是根据“操作进行了三次才停止”列出满足题意的不等式组;
3、C
【解析】
至少有一个角不小于90°的反面是每个内角都为锐角,据此即可假设.
【详解】
解:反证法的第一步先假设结论不成立,即四边形的每个内角都为锐角.
故选C.
本题结合角的比较考查反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
4、B
【解析】
用、分别代替原式中的、,再根据分式的基本性质进行化简,观察分式的变化即可.
【详解】
根据题意,得
新的分式为.
故选:.
此题考查了分式的基本性质.
5、C
【解析】
结合图形,逐项进行分析即可.
【详解】
在△ADC和△BAC中,∠ADC=∠BAC,
如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
②,
故选C.
本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
6、C
【解析】
设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:
180(n-2)=360×4,解方程可得.
【详解】
解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:
180(n-2)=360×4
n-2=8
解得:n=10
所以,这是个十边形
故选C.
本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.
7、D
【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、因为32+52≠92,所以不能组成直角三角形;
B、因为42+62≠82,所以不能组成直角三角形;
C、因为132+142≠152,所以不能组成直角三角形;
D、因为82+152=172,所以能组成直角三角形.
故选:D.
此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
8、D
【解析】
试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:
①男女生共20人;
②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.
据此列出方程组:.
故选D.
考点:由实际问题抽象出二元一次方程组.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、≠1
【解析】
根据题意得:-1≠0,即≠1.
10、或﹣.
【解析】
试题分析:当点F在OB上时,设EF交CD于点P,
可求点P的坐标为(,1).
则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
由题意可得:3+x=2(3﹣x),
解得:x=.
由对称性可求当点F在OA上时,x=﹣,
故满足题意的x的值为或﹣.
故答案是或﹣.
考点:动点问题.
11、6.1
【解析】
根据题意求得CD=BC=2,即可求得OD=,由△POA的面积是△PCD面积的2倍,得出xP=3,根据△POD的面积等于2k﹣8,列出关于k的方程,解方程即可求得.
【详解】
∵▱OABC的顶点A的坐标为(2,0),
∴BD∥x轴,OA=BC=2,
∵反比例函数和的图象分别经过C,B两点,
∴DC•OD=k,BD•OD=2k,
∴BD=2CD,
∴CD=BC=2,BD=1,
∴C(2,),B(1,),
∴OD=,
∵△POA的面积是△PCD面积的2倍,
∴yP=,
∴xP==3,
∵△POD的面积等于2k﹣8,
∴OD•xP=2k﹣8,即×3=2k﹣8,
解得k=6.1,故答案为6.1.
本题考查反比例函数系数k的几何意义,平行四边形的性质,反比例图象上点的坐标特征,求得P的横坐标是解题的关键.
12、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
13、1.
【解析】
首先设这个未公布的得分是x,根据算术平均数公式可得关于x的方程,解方程即可求得答案.
【详解】
设这个未公布的得分是x,
则:,
解得:x=1,
故答案为:1.
本题考查了算术平均数,关键是掌握对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)
【解析】
(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠BAE=∠ADF,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;
(2)利用全等三角形的性质和勾股定理解答即可.
【详解】
证明:(1)四边形为正方形,
,,
,,
,
,,
,
在和中
,
,
,
;
(2),
,,
,,
,
,
.
故答案为:(1)详见解析;(2).
本题考查三角形全等的判定与性质和正方形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
15、;.
【解析】
先将括号内通分计算分式的减法,再讲除式分子因式分解、除法转化为乘法,约分即可化简,由方程得解得概念可得,即可知原式的值.
【详解】
=
==,
∵m是方程的解,
∴,
∴原式=
此题考查分式的化简求值,解题关键在于掌握分式的运算法则.2
16、证明:在ABCD中,AD=BC且AD∥BC,
∵BE=FD,∴AF=CE.
∴四边形AECF是平行四边形
【解析】
试题分析:根据平行四边形的性质可得AF∥EC.AF=EC,然后根据平行四边形的定义即可证得.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵点E,F分别是BC,AD的中点,
∴,,
∴AF∥EC,AF=EC,
∴四边形AECF是平行四边形.
【点评】本题考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证出AF=EC是解决问题的关键.
17、BE∥DF,BE=DF,理由见解析
【解析】
证明△BCE≌△DAF,得到BE=DF,∠3=∠1,问题得解.
【详解】
解:猜想:BE∥DF,BE=DF.
证明:如图1
∵四边形ABCD是平行四边形,
∴BC=AD,∠1=∠2,
又∵CE=AF,
∴△BCE≌△DAF.
∴BE=DF,∠3=∠1.
∴BE∥DF.
此题考查了平行四边形的性质、全等三角形的判定与性质.难度适中,注意掌握数形结合思想的应用.
18、(3)y=-x+2;(2)当l过点C时,a的值为3或3.
【解析】
(3)将点D坐标代入y=-x+b,解出b,再代回即可得函数的解析式;
(2)l过点C,点P的位置有两种:①点P位于点E时;②点P位于点C时;
【详解】
(3)当y=-x+b过点C(3,3)时,
3=-3+b,
∴b=2.
直线l的解析式为y=-x+2.
(2)∵点A,B,C,D的坐标分别为(-2,2),(-2,3),(3,3),(3,2).
∴AD=BC=5,AB=3,
∵直线l的解析式为y=-x+2.
∴由得l与AD的交点E为(2,2)
∴DE=3.
∴①当l过点C时,点P位于点E时,a=DE=3;
②当l过点C时,点P位于点C时,a=AD+AB+BC=5+3+5=3.
∴当l过点C时,a的值为3或3.
本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,本题中等难度.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、【解析】
根据一次函数的性质解答即可.
【详解】
解:∵-2<0,1>0,
∴直线过第一、二、四象限,且随的增大而减小,
故答案为:一、二、四;减小.
本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.
20、90分.
【解析】
试题分析:根据加权平均数的计算公式求解即可.
解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).
故答案为90分.
考点:加权平均数.
21、x<1
【解析】
根据两直线的交点坐标和函数的图象即可求出答案.
【详解】
∵直线y1=kx+b与直线y2=2x交于点P(1,m),
∴不等式2x<kx+b的解集是x<1,
故答案是:x<1.
考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、>
【解析】
根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
【详解】
在反比例函数y=中,k=1>0,
∴该函数在x<0内y随x的增大而减小.
∵x1<x1<0,
∴y1>y1.
故答案为:>.
本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
23、x≥8
【解析】
略
二、解答题(本大题共3个小题,共30分)
24、(1)二; (2)见解析.
【解析】
(1)由垂直平分线性质可知,AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明才可以得出,故第2步出现了错误;
(2) )根据平行四边形性质求出AD∥BC,推出,证,推出,可得四边形是平行四边形,推出菱形.
【详解】
(1)二
(2)四边形是平行四边形,
.
.
是的垂直平分线,
.
在与中,
.
.
四边形是平行四边形.
.
四边形是菱形.
本题考查菱形的判定,以及平行四边形的性质,关键是掌握对角线互相垂直的平行四边形是菱形
25、(1)见解析;(2)①;②当 时,四边形PBQD是菱形.
【解析】
(1)先证明△POD≌△QOB,从而得OP=OQ,再由OB=OD,根据对角线互相平分的四边形是平行四边形即可证得结论;
(2)①根据PD=AD-AP即可得;
②由菱形的性质可得BP=PD=8-t,再由∠A=90°,根据勾股定理可得t2+62=(8-t)2,求出t值即可.
【详解】
(1)在矩形ABCD中,,
,
∵点O是BD的中点,
,
在△POD和△QOB中,
,
∴△POD≌△QOB,
∴OP=OQ,
又∵OB=OD,
四边形PBQD是平行四边形;
(2)①,
∴PD=8-AP=(8-t)cm;
②∵四边形PBQD是菱形,
∴BP=PD=8-t,
∵四边形ABCD是矩形,
∴∠A=90°,
∴AP2+AB2=BP2,
即t2+62=(8-t)2,
解得:t=,
即当s时,四边形PBQD是菱形.
本题考查了矩形的性质,全等三角形的判定与性质,平行四边形的判定,菱形的性质,勾股定理等知识,熟练掌握和灵活运用相关知识是解题的关键.
26、4
【解析】
根据矩形的性质得到BC=AD=8,∠B=90°,再根据折叠的性质得BE=EF=3,∠AFE=∠B=90°,则可计算出CE=5,然后在Rt△CEF中利用勾股定理计算FC.
【详解】
解:∵四边形是矩形,
.
,
,
;
在中,
.
本题考查了折叠的性质:叠前后图形的形状和大小不变,对应边和对应角相等.也考查了矩形的性质以及勾股定理.
题号
一
二
三
四
五
总分
得分
山东省日照市实验中学2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份山东省日照市实验中学2024-2025学年九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省东平县实验中学2025届九上数学开学达标检测模拟试题【含答案】: 这是一份山东省东平县实验中学2025届九上数学开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省东平实验中学2025届九上数学开学检测试题【含答案】: 这是一份山东省东平实验中学2025届九上数学开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。