山东省东平县实验中学2025届九上数学开学达标检测模拟试题【含答案】
展开这是一份山东省东平县实验中学2025届九上数学开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小明和小莉同时从学校出发,按相同路线去图书馆,小明骑自行车前往,小莉前一半路程先乘坐公共汽车到图书馆站,然后步行剩下的路程走到图书馆.已知小明骑车的速度是小莉步行速度的2倍,小莉乘坐公共汽车的速度是小明骑车速度的2倍.则比较小明与小莉到达图书馆需要的时间是( )
A.一样多B.小明多C.小莉多D.无法确定
2、(4分)已知△ABC的三边之长分别为a、1、3,则化简|9-2a|-的结果是( )
A.12-4aB.4a-12C.12D.-12
3、(4分)下列图形,可以看作中心对称图形的是( )
A.B.C.D.
4、(4分)若a<+2<b,其中a,b是两个连续整数,则a+b=( )
A.20B.21C.22D.23
5、(4分)点到轴的距离为( )
A.3B.4C.5D.
6、(4分)如图,在平行四边形ABCD中,BD为对角线,点E、O、F分别是 AB、BD、BC的中点,且,,则平行四边形ABCD的周长为
A.10B.12C.15D.20
7、(4分)某人从一鱼摊上买了三条鱼,平均每条元,又从另一个鱼摊上买了两条鱼,平均每条元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是
A.B.C.D.与大小无关
8、(4分)在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是( )
A.8
9、(4分)当m_____时,函数y=(m﹣3)x﹣2中y随x的增大而减小.
10、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
11、(4分)若,则=______.
12、(4分)如图,在中,,,,则__________.
13、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,O是矩形ABCD对角线的交点,作,,DE,CE相交于点E,求证:四边形OCED是菱形.
15、(8分)甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.
(1)请根据乙校的数据补全条形统计图:
(2)两组样本数据的平均数.中位数众数如下表所示,写出、的值:
(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好些,请为他们各写出条可以使用的理由;甲校:____.乙校:________.
(4)综合来看,可以推断出________校学生的数学学业水平更好些,理由为________.
16、(8分)如图,在中,点、分别是、上的点,且.求证:四边形是平行四边形.
17、(10分)己知反比例函数(常数,)
(1)若点在这个函数的图像上,求的值;
(2)若这个函数图像的每一支上,都随的增大而增大,求的取值范围;
(3)若,试写出当时的取值范围.
18、(10分)如图,在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点在轴的正半轴上,直线交轴于点,边交轴于点,连接
(1)菱形的边长是________;
(2)求直线的解析式;
(3)动点从点出发,沿折线以2个单位长度/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90分,方差是2;小强五次成绩的平均数也是90分,方差是14.8,则小明和小强的成绩中,__________的成绩更稳定.
20、(4分)在比例尺1∶8000000的地图上,量得太原到北京的距离为6.4厘米,则太原到北京的实际距离为公里。
21、(4分)分解因式:x2-2x+1=__________.
22、(4分)不等式组的整数解有_____个.
23、(4分)如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.
二、解答题(本大题共3个小题,共30分)
24、(8分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:
请根据以上信息,解答以下问题:
(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;
(2)求出该班调查的家庭总户数是多少?
(3)求该小区用水量不超过15的家庭的频率.
25、(10分)如图,在中,,,是的垂直平分线.
(1)求证:是等腰三角形.
(2)若的周长是,,求的周长.(用含,的代数式表示)
26、(12分)已知反比例函数y=的图象经过点(-1,-2).
(1)求y与x的函数关系式;
(2)若点(2,n)在这个图象上,求n的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分别设出小明、小莉的速度路程,然后用代数式表示时间再比较即可.
【详解】
设小明的速度是v,则小莉乘坐公共汽车的速度2v, 小莉步行的速度,总路程是s.
小明的时间是:
小莉的时间是:
所以,小莉用的时间多,答案选C.
本题是对用字母表示数的实际应用,能找到本题当中数量与数量之间的关系是解决本题的关键.
2、A
【解析】
二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
【详解】
解:由题意得 2<a<4,
∴9-2a>0,3-2a<0
=9-2a-(2a-3)
=9-2a-2a+3
=12-4a,
故选:A.
本题考查了二次根式化简,熟练掌握化简二次根式是解题的关键.
3、B
【解析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
、不是中心对称图形,故本选项不符合题意;
、是中心对称图形,故本选项符合题意;
、不是中心对称图形,故本选项不符合题意;
、不是中心对称图形,故本选项不符合题意.
故选:.
本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.
4、B
【解析】
直接利用8<<9,进而得出a,b的值即可得出答案.
【详解】
解∵8<<9,
∴8+2<+2<9+2,
∵a<+2<b,其中a,b是两个连续整数,
∴a=10,b=11,
∴a+b=10+11=1.
故选:B.
此题主要考查了估算无理数的大小,得出a,b的值是解题关键.
5、A
【解析】
根据点到y轴的距离是点的横坐标的绝对值,可得答案.
【详解】
解:点的坐标(3,-4),它到y轴的距离为|3|=3,
故选:A.
本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.
6、D
【解析】
由于点E、O、F分别是 AB、BD、BC的中点,根据三角形的中位线性质可得:AD=2OE=6,CD=2OF=4,再根据平行四边形周长公式计算即可.
【详解】
因为点E,O,F分别是 AB,BD,BC的中点,
所以OE是△ABD的中位线,OF是△DBC中位线,
所以AD=2OE=6,CD=2OF=4,
所以平行四边形的周长等于=,
故选D.
本题主要考查三角形的中位线性质,解决本题的关键是要熟练掌握三角形中位线的性质.
7、A
【解析】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0.
【详解】
利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0
∴0.5b-0.5a<0,
∴a>b.
故选A.
解决本题的关键是读懂题意,找到符合题意的不等关系式.
8、D
【解析】【分析】易得两条对角线的一半和BC组成三角形,那么BC应大于已知两条对角线的一半之差,小于两条对角线的一半之和.
【详解】平行四边形的对角线互相平分得:两条对角线的一半分别是5,4,
再根据三角形的三边关系,得:1<BC<9,
故选D.
【点睛】本题考查了平行四边形的性质、三角形三边关系,熟练掌握平行四边形的对角线互相平分是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m<3
【解析】
根据已知条件“一次函数y=(m-3)x-2中y随x的增大而减小”知,m-3<0,然后解关于m的不等式即可.
【详解】
∵一次函数y=(m-3)x-2中y随x的增大而减小,
∴m−3<0,
解得,m<3;
故答案为<3
考查一次函数的性质,掌握一次函数的图象与性质是解题的关键.
10、x<
【解析】
先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.
【详解】
解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
∴3=2m,
解得m,
∴点A的坐标是(,3),
∴不等式2x<ax+4的解集为x<.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
12、30.
【解析】
利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.
【详解】
解:∵,,
又∵
∴
∴∠C=90°
∴
故答案为:30
本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.
13、(只写一个即可)
【解析】
设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
【详解】
设方程为x2+kx+4=0,由题意得
k2-16=0,
∴k=±4,
∴一次项为(只写一个即可).
故答案为:(只写一个即可).
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
首先判断出四边形OCED是平行四边形,而四边形ABCD是矩形,由OC、OD是矩形对角线的一半,知OC=OD,从而得出四边形OCED是菱形.
【详解】
证明:∵DE∥AC,CE∥DB,
∴四边形OCED是平行四边形,
又∵四边形ABCD是矩形,
∴AC=BD,OC=OA=AC,OB=OD=BD,
∴OC=OD,
∴平行四边形OCED是菱形(一组邻边相等的平行四边形是菱形).
此题主要考查了菱形的判定,关键是掌握菱形的判定方法:
①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);
②四条边都相等的四边形是菱形.
③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
15、(1)见解析;(2);;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一.
【解析】
(1)根据表格中的数据可以得到乙校70-79的和60-69的各有多少人,从而可以将条形统计图补充完整;
(2)根据表格中的数据将乙校的数据按照从小到大排列,即可得到这组数据的中位数和众数;
(3)答案不唯一,理由需包含数据提供的信息;
(4)答案不唯一,理由需支撑推断结论.
【详解】
解:(1)由表格可得,
乙校,70-79的有5人,60-69的有2人,
补全条形统计图,如下图
各分数段条形统计图
(2)乙校数据按照从小到大排列是:57、61、63、71、72、73、76、79、80、83、84、84、84、85、85、87、87、88、89、89、90、90、91、92、92、92、92、92、94、94,
∴这组数据的中位数是:,;
(3)甲校:我们学校的平均分高于乙校,所以我们学校的成绩好;
乙校:我们学校的众数高于甲校,所以我们学校的成绩好;
故答案为我们学校的平均分高于乙校,所以我们学校的成绩好;我们学校的众数高于甲校,所以我们学校的成绩好;
(4)综合来看,甲校学生的数学学业水平更好一些,理由:甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好
本题考查条形统计图、中位数、众数、平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、见解析.
【解析】
在▱ABCD中,根据平行四边形的性质可得AB=CD,AB∥CD,又由于BE=CF,则AE=CF,根据平行四边形的判定可证四边形AECF是平行四边形.
【详解】
∵四边形是平行四边形,
∴且
∵
∴
∴
∴四边形是平行四边形
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.
17、(1);(2);(3)
【解析】
(1)把点代入函数即可求解;
(2)根据这个函数图像的每一支上,都随的增大而增大,求出k即可;
(3)当,求出x的范围即可;
【详解】
(1)把点代入函数,得2=
得k=4;
(2)∵这个函数图像的每一支上,都随的增大而增大,求出k即可;
∴k-2<0
∴
(3)当,
∵
∴-3≤≤-2
∴
本题考查的是的反比例函数,熟练掌握反比例函数的性质是解题的关键.
18、(1)5;(2)y=-;(3)S=t-.
【解析】
(1)Rt△AOH中利用勾股定理即可求得菱形的边长;
(2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;
(3)根据S△ABC=S△AMB+SBMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.
【详解】
(1)Rt△AOH中,
AO==5,所以菱形边长为5;
(2)∵四边形ABCO是菱形,
∴OC=OA=AB=5,即C(5,0).
设直线AC的解析式y=kx+b,函数图象过点A、C,得,解得
,
直线AC的解析式y=-;
(3)设M到直线BC的距离为h,
当x=0时,y=,即M(0,),HM=HO-OM=4-=,
由S△ABC=S△AMB+SBMC=AB•OH=AB•HM+BC•h,
×5×4=×5×+×5h,解得h=,
①当0≤t<时,BP=BA-AP=5-2t,HM=OH-OM=,
s=BP•HM=×(5-2t)=-t+,
②当2.5<t≤5时,BP=2t-5,h=
S=BP•h=×(2t-5)=t-.
此题考查待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、小明
【解析】
在平均数相等的前提下,方差或标准差越小,说明数据越稳定,结合题意可知,只需比较小明、小强两人成绩的方差即可得出答案.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8;
∴平均成绩一样,小明的方差小,则小明的成绩稳定.
故选A.
本题考查方差的实际应用,解题的关键是掌握方差的使用.
20、512
【解析】设甲地到乙地的实际距离为x厘米,
根据题意得:1/8000000 =6.4/x ,
解得:x=51200000,
∵51200000厘米=512公里,
∴甲地到乙地的实际距离为512公里.
21、(x-1)1.
【解析】
由完全平方公式可得:
故答案为.
错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
22、3
【解析】
首先解每个不等式,把解集在数轴上表示出来即可得到不等式组的解集,然后确定解集中的整数,便可得到整数解得个数.
【详解】
,
解不等式得:,
解不等式得:,
不等式的解集是,
则整数解是:,共个整数解.
故答案为:.
本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
23、1.2.
【解析】
根据实物与影子的比相等可得小芳的影长.
【详解】
∵爸爸身高1.8m,小芳比他爸爸矮0.3m,
∴小芳高1.5m,
设小芳的影长为xm,
∴1.5:x=1.8:2.1,
解得x=1.2,
小芳的影长为1.2m.
本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.
二、解答题(本大题共3个小题,共30分)
24、(1)m=12,n=0.08;(2)50;(3)0.68.
【解析】
(1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;
补充完整的频数直方图见详解;
(2)根据任意一组频数和频率即可得出总频数,即总频数为;
(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
【详解】
解:(1)∵频数为6,频率为0.12
∴总频数为
∴m=50-6-16-10-4-2=12
∴n=4÷50=0.08
数据求出后,即可将频数直方图补充完整,如下图所示:
(2)根据(1)中即可得知,总频数为
答:该班调查的家庭总户数是50户;
(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
此题主要考查统计图和频数分布表的性质,熟练掌握其特征,即可得解.
25、(1)详见解析;(2)a+b
【解析】
(1)首先由等腰三角形ABC得出∠B,然后由线段垂直平分线的性质得出∠CDB,即可判定;
(2)由等腰三角形BCD,得出AB,然后即可得出其周长.
【详解】
(1)∵,
∴
∵是的垂直平分线
∴
∴
∵是的外角
∴
∴
∴
∴是等腰三角形;
(2)∵,的周长是
∴
∵
∴
∴的周长.
此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.
26、(1)y=.(2)n=1.
【解析】
(1)直接把点(﹣1,﹣2)代入反比例函数y=即可得出结论.
(2)把(2,n)代入强大的解析式即可求得.
【详解】
解:(1)∵反比例函数y=的图象经过(﹣1,﹣2),
∴﹣2=,解得k=2.
∴这个函数的解析式为y=.
(2)把(2,n)代入y=得n==1.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
甲校
乙校
月均用水量x(t)
频数(户)
频率
0<x≤5
6
0.12
5<x≤10
m
0.24
10<x≤15
16
0.32
15<x≤20
10
0.20
20<x≤25
4
n
25<x≤30
2
0.04
相关试卷
这是一份江苏省南京鼓楼实验中学2025届数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省武城县实验中学九上数学开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省梁山县数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。