|试卷下载
终身会员
搜索
    上传资料 赚现金
    清远市重点中学2024-2025学年九上数学开学综合测试模拟试题【含答案】
    立即下载
    加入资料篮
    清远市重点中学2024-2025学年九上数学开学综合测试模拟试题【含答案】01
    清远市重点中学2024-2025学年九上数学开学综合测试模拟试题【含答案】02
    清远市重点中学2024-2025学年九上数学开学综合测试模拟试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    清远市重点中学2024-2025学年九上数学开学综合测试模拟试题【含答案】

    展开
    这是一份清远市重点中学2024-2025学年九上数学开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的( )
    A.中位数B.众数C.加权平均数D.方差
    2、(4分)如果关于的方程有解,那么实数的取值范围是( )
    A.B.C.D.
    3、(4分)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
    A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
    C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %
    4、(4分)下列二次根式中,最简二次根式的是( )
    A.B.C.D.
    5、(4分)如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(x)的函数,那么这个函数的大致图像只能是( )
    A.B.C.D.
    6、(4分)关于的方程的解是正数,则的取值范围是( )
    A.B.C.D.
    7、(4分)下列各曲线中能表示y是x的函数的是( )
    A.B.C.D.
    8、(4分)一个正多边形每个外角都是30°,则这个多边形边数为( )
    A.10B.11C.12D.13
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若直线与直线平行,且与两坐标轴围成的面积为1,则这条直线的解析式是________________.
    10、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
    11、(4分)若不等式(m-2)x>1的解集是x<,则m的取值范围是______.
    12、(4分)不等式的负整数解有__________.
    13、(4分)解关于x的方程产生增根,则常数m的值等于________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,两个全等的直角三角板ABC和DEF重叠在一起,其中∠ACB=∠DFE=90°,∠A=60°,AC=1,固定△ABC,将△DEF沿线段AB向右平移(即点D在线段AB上),回答下列问题:
    (1)如图2,连结CF,四边形ADFC一定是 形.
    (2)连接DC,CF,FB,得到四边形CDBF.
    ①如图3,当点D移动到AB的中点时,四边形CDBF是 形.其理由?
    ②在△DEF移动过程中,四边形CDBF的形状在不断改变,但它的面积不变化,其面积为 .
    15、(8分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)
    (1)由表格中的数据,计算出甲的平均成绩是 环,乙的成绩是 环.
    (2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.
    16、(8分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
    (1)画出把△ABC向下平移4个单位后的图形.
    (2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.
    (3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.
    17、(10分)如图,在平行四边形中,点、分别是、上的点,且,,求证:
    (1);
    (2)四边形是菱形.
    18、(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
    根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)
    (1)这6名选手笔试成绩的中位数是 分,众数是 分.
    (2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
    (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于的一元二次方程的一个根是,则的值是_______.
    20、(4分)已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.
    21、(4分)为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由、、三种饼干搭配而成,每袋礼包的成本均为、、三种饼干成本之和.每袋甲类礼包有5包种饼干、2包种饼干、8包种饼干;每袋丙类礼包有7包种饼干、1包种饼干、4包种饼干.已知甲每袋成本是该袋中种饼干成本的3倍,利润率为,每袋乙的成本是其售价的,利润是每袋甲利润的;每袋丙礼包利润率为.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为,则当天该网店销售总利润率为__________.
    22、(4分)一次函数不经过第三象限,则k的取值范围是______
    23、(4分)如图,正方形ABCD的面积为,则图中阴影部分的面积为______________ .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,、相交于点,且是、的中点,点在四边形外,且,
    求证:边形是矩形.
    25、(10分)如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.
    (1)若BG=1,BC=,求EF的长度;
    (2)求证:CE+BE=AB.
    26、(12分) (1)计算:
    (2)已知,求代数式的值。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据中位数、众数,加权平均数和方差的定义逐一判断可得出答案。
    【详解】
    解:A.由中位数的定义可知,宁宁成绩与中位数比较可得出他的成绩是否在班级中等偏上,故本选项正确;
    B. 由众数的定义可知,众数反映同一个成绩人数最多的情况,故本选项错误;
    C.由加权平均数的性质可知,平均数会受极端值的影响,故本选项错误;
    D.由方差的定义可知,方差反映的是数据的稳定情况,故本选项错误。
    本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    2、D
    【解析】
    根据方程有解确定出a的范围即可.
    【详解】
    ∵关于x的方程(a-3)x=2019有解,
    ∴a-3≠0,即a≠3,
    故选:D.
    此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.
    3、C
    【解析】
    【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
    【详解】观察直方图,由图可知:
    A. 最喜欢足球的人数最多,故A选项错误;
    B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
    C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
    D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
    故选C.
    【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
    4、D
    【解析】
    分析:根据最简二次根式的概念逐项分析即可.
    详解: A. =2 , 故不是最简二次根式;
    B. =, 故不是最简二次根式;
    C.当a≥0时, , 故不是最简二次根式;
    D. 的被开方式既不含分母,又不含能开的尽的因式,故是最简二次根式;
    故选D.
    点睛:本题考查了二次根式的识别,如果二次根式的被开放式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.
    5、A
    【解析】
    分析:根据题意中的生产流程,发现前三个小时是生产时间,所以未装箱的产品的数量是增加的,后开始装箱,每小时装的产品比每小时生产的产品数量多,所以未装箱的产品数量是下降的,直至减为零.
    详解:由题意,得前三个小时是生产时间,所以未装箱的产品的数量是增加的.
    ∵3小时后开始装箱,每小时装的产品比每小时生产的产品数量多,∴3小时后,未装箱的产品数量是下降的,直至减至为零.
    表现在图象上为随着时间的增加,图象是先上升后下降至0的.
    故选A.
    点睛:本题考查了的实际生活中函数的图形变化,属于基础题.解决本题的主要方法是根据题意判断函数图形的大致走势,然后再下结论,本题无需计算,通过观察看图,做法比较新颖.
    6、D
    【解析】
    先求得分式方程的解,再由题意可得关于x的不等式,解不等式即得答案.
    【详解】
    解:解方程,得,
    因为方程的解是正数,所以,
    所以,解得.
    故选D.
    本题考查了分式方程的解法和不等式的解法,熟练掌握分式方程和不等式的解法是解题的关键.
    7、B
    【解析】
    因为对于函数中自变量x的取值,y有唯一一个值与之对应,故选B.
    8、C
    【解析】
    根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.
    解答:360°÷30°=1.
    故选C.
    “点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=1x±1.
    【解析】
    根据平行直线的解析式的k值相等可得k=1,然后求出直线与坐标轴的交点,再利用三角形的面积公式列式计算即可求得直线解析式.
    【详解】
    解:∵直线y=kx+b与直线y=1x-3平行,
    ∴k=1,即y=1x+b
    分别令x=0和y=0,得与y,x轴交点分别为(0,b)和(-,0)
    ∴S=×|b|×|-|=1,∴b=±1
    ∴y=1x±1.
    故答案为:y=1x±1.
    本题考查两直线相交或平行问题,以及三角形面积问题,熟记平行直线的解析式的k值相等是解题的关键.
    10、2.
    【解析】
    试题分析:根据菱形的面积等于对角线乘积的一半解答.
    试题解析:∵AC=4cm,BD=8cm,
    ∴菱形的面积=×4×8=2cm1.
    考点:菱形的性质.
    11、m<1
    【解析】
    根据不等式的性质和解集得出m-1<0,求出即可.
    【详解】
    ∵不等式(m-1)x>1的解集是x<,
    ∴m-1<0,
    即m<1.
    故答案是:m<1.
    考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.
    12、-5、-4、-3、-2、-1
    【解析】
    求出不等式的解集,取解集范围内的负整数即可.
    【详解】
    解:移项得:
    合并同类项得:
    系数化为1得:

    所以原不等式的负整数解为:-5、-4、-3、-2、-1
    故答案为:-5、-4、-3、-2、-1
    本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.
    13、
    【解析】
    先通过去分母,将分式方程化为整式方程,再根据增根的定义得出x的值,然后将其代入整式方程即可.
    【详解】
    两边同乘以得,
    由增根的定义得,
    将代入得,
    故答案为:.
    本题考查了解分式方程、增根的定义,掌握理解增根的定义是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)平行四边;(2)①见解析;②
    【解析】
    (1)根据平移的性质即可证明四边形ADFC是平行四边形;
    (2)①根据菱形的判定定理即可求解;
    ②根据四边形CDBF的面积=DF×BC即可求解.
    【详解】
    解:(1)∵平移
    ∴AC∥DF,AC=DF
    ∴四边形ADFC是平行四边形
    故答案为平行四边
    (2)①∵△ACB是直角三角形,D是AB的中点
    ∴CD=AD=BD
    ∵AD=CF,AD∥FC
    ∴BD=CF
    ∵AD∥FC,BD=CF
    ∴四边形CDBF是平行四边形
    又∵CD=BD
    ∴四边形CDBF是菱形.
    ②∵∠A=60°,AC=1,∠ACB=90°
    ∴BC=,DF=1
    ∵四边形CDBF的面积=DF×BC
    ∴四边形CDBF的面积=
    此题主要考查三角形的平移,解题的关键是熟知菱形的判定与性质.
    15、(1)9,9;(2)甲.
    【解析】
    分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;
    2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.
    详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,
    乙的平均成绩是:(10+7+10+10+9+8)÷6=9;
    (2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.
    乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]= .
    推荐甲参加全国比赛更合适,理由如下:
    两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.
    点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键. 方差的计算公式为:.
    16、 (1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).
    【解析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;
    (3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.
    【详解】
    (1)如图所示,△即为所求作;
    (2)如图所示,△DEF即为所求作;
    (3)D1(3,3)、D2(-7,3)、D3(-5,-3).
    此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.
    17、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)由平行四边形的性质得出∠A=∠C,由ASA证明△DAE≌△DCF,即可得出DE=DF;
    (2)由全等三角形的性质得出DA=DC,即可得出结论.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形
    ∴∠A=∠C,
    在△DAE和△DCF中,,
    ∴△DAE≌△DCF(ASA),
    ∴DE=DF;
    (2)由(1)可得△DAE≌△DCF
    ∴DA=DC,
    又∵四边形ABCD是平行四边形
    ∴四边形ABCD是菱形.
    本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
    18、(1) 84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.
    【解析】
    (1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;
    (2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;
    (3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.
    【详解】
    (1)把这组数据从小到大排列为,80,84,84,85,90,92,
    最中间两个数的平均数是(84+85)÷2=84.5(分),
    则这6名选手笔试成绩的中位数是84.5,
    84出现了2次,出现的次数最多,
    则这6名选手笔试成绩的众数是84;
    故答案为:84.5,84;
    (2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:

    解得:,
    故笔试成绩和面试成绩各占的百分比是40%,60%;
    (3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),
    3号选手的综合成绩是84×0.4+86×0.6=85.2(分),
    4号选手的综合成绩是90×0.4+90×0.6=90(分),
    5号选手的综合成绩是84×0.4+80×0.6=81.6(分),
    6号选手的综合成绩是80×0.4+85×0.6=83(分),
    则综合成绩排序前两名人选是4号和2号
    此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.
    【详解】
    解:把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,解得a1=1,a2=-1,
    而a-1≠0,
    所以a=-1.
    故答案为:-1.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    20、4.1
    【解析】
    分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.
    【详解】
    若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;
    若众数为1,则数据为1、1、1、7,中位数为1,符合题意,
    此时平均数为=4.1;
    若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;
    故答案为:4.1.
    本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.
    21、25%
    【解析】
    设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.
    【详解】
    解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:
    5x+2y+8z=15x,
    ∴5x=y+4z,
    由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;
    ∵每袋乙的成本是其售价的,利润是每袋甲利润,
    可知每袋乙礼包的利润是:4.5x×=2x,
    则乙礼包的售价为12x,成本为10x;
    由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,
    ∵每袋丙礼包利润率为:25%,
    ∴丙礼包的售价为15x,成本为12x;
    ∵甲、乙、丙三种礼包袋数之比为4:6:5,
    ∴,
    ∴总利润率是25%,
    故答案为:25%.
    本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.
    22、
    【解析】
    根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.
    【详解】
    解:∵一次函数y=kx+2的图象不经过第三象限,
    ∴一次函数y=kx+2的图象经过第一、二、四象限,
    ∴k<1.
    故答案为:k<1.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
    23、
    【解析】
    试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    连接EO,首先根据O为BD和AC的中点,得出四边形ABCD是平行四边形,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,得到AC=BD,可证出结论.
    【详解】
    解:连接如图所示:
    是、的中点,
    ∴,,
    ∴四边形是平行四边形,
    在中,为中点,,
    在中,为中点,,
    ,又四边形是平行四边形,
    平行四边形是矩形.
    此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.
    25、;证明见解析.
    【解析】
    (1)根据勾股定理得到CG==3,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB∥CD,于是得到结论;
    (2)延长AE交BC于H,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,根据全等三角形的性质得到AG=CG,于是得到结论.
    【详解】


    ,,




    四边形ABCD是平行四边形,

    ,,


    如图,延长AE交BC于H,
    四边形ABCD是平行四边形,






    在与中,,
    ≌,




    本题考查平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题关键.
    26、 (1) ;(2)
    【解析】
    (1) 利用二次根式的性质化简,再合并同类项即可;(2) 先对要求的式子进行配方,然后把x的值代入计算即可.
    【详解】
    (1)原式==
    (2)当时,
    =
    =
    =
    =
    本题考查了二次根式的化简求值,掌握混合运算的步骤和配方法的步骤是解题的关键.
    题号





    总分
    得分
    第一次
    第二次
    第三次
    第四次
    第五次
    第六次

    10
    8
    9
    8
    10
    9

    10
    7
    10
    10
    9
    8
    相关试卷

    攀枝花市重点中学2024-2025学年数学九上开学综合测试模拟试题【含答案】: 这是一份攀枝花市重点中学2024-2025学年数学九上开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题,六月份平均增长率为.等内容,欢迎下载使用。

    德宏市重点中学2024-2025学年数学九上开学综合测试模拟试题【含答案】: 这是一份德宏市重点中学2024-2025学年数学九上开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    包头市重点中学2024-2025学年数学九上开学综合测试试题【含答案】: 这是一份包头市重点中学2024-2025学年数学九上开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map