内蒙古乌海市2024-2025学年数学九上开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法中正确的是( )
A.点(2,3)和点(3,2)表示同一个点 B.点(-4,1)与点(4,-1)关于x轴对称
C.坐标轴上的点的横坐标和纵坐标只能有一个为0 D.第一象限内的点的横坐标与纵坐标均为正数
2、(4分)按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1B.2C.3D.4
3、(4分)下列说法正确的是( )
A.的相反数是B.2是4的平方根
C.是无理数D.计算:
4、(4分)下列各点中,位于第四象限的点是( )
A.(3,4)B.(3,4)C.(3,4)D.(3,4)
5、(4分)如图,点为的平分线上的一点,于点.若,则到的距离为( )
A.5B.4C.3.5D.3
6、(4分)已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )
A.△ABC是直角三角形,且AC为斜边
B.△ABC是直角三角形,且∠ABC=90°
C.△ABC的面积为60
D.△ABC是直角三角形,且∠A=60°
7、(4分)下列多项式能用完全平方公式进行分解因式的是( )
A.B.
C.D.
8、(4分)数据0,1,2,3,x的平均数是2,则这组数据的方差是( )
A.2B.C.10D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
10、(4分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.
11、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.
12、(4分)以下是小明化简分式的过程.
解:原式
①
②
③
④
(1)小明的解答过程在第_______步开始出错;
(2)请你帮助小明写出正确的解答过程,并计算当时分式的值.
13、(4分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于 BC 的长.
(1)求∠EOF 的度数.
(2)连接 OA、OC(如图2).求证:△AOE∽△CFO.
(3)若OE=OF,求的值.
15、(8分)(1)计算并观察下列各式:
第个: ;
第个: ;
第个:;
······
这些等式反映出多项式乘法的某种运算规律.
(2)猜想:若为大于的正整数,则;
(3)利用(2)的猜想计算;
(4)拓广与应用.
16、(8分)为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为800米,假使宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:
(1)请问村庄能否听到宣传,并说明理由;
(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?
17、(10分)小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了次实验,实验的结果如下:
(1)计算“点朝上”的频率和“点朝上”的频率.
(2)小颖说:“根据实验得出,出现点朝上的机会最大”;小红说:“如果投掷次,那么出现 点朝上的次数正好是次.”小颖和小红的说法正确吗?为什么?
18、(10分)如图,在直角坐标系中,四边形OABC为矩形,A(6,0),C(0,3),点M在边OA上,且M(4,0),P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度分别为每秒1个单位、每秒2个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
(1)用含t的代数式表示点P的坐标.
(2)分别求当t=1,t=3时,线段PQ的长.
(3)求S与t之间的函数关系式.
(4)直接写出L落在第一象限的角平分线上时t的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则反比例函数的解析式是______.
20、(4分)如图,在△ABC中,A,B两点的坐标分别为A(-1,3),B(-2,0), C(2,2),则△ABC的面积是________ .
21、(4分)如图,直线y=kx+3经过点A(1,2),则它与x轴的交点B的坐标为____.
22、(4分)已知m+3n的值为2,则﹣m﹣3n的值是__.
23、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
25、(10分)如图,矩形中,,画出面积不相等的2个菱形,使菱形的顶点都在矩形的边上.
26、(12分)如图,矩形ABCD中,AB=4,BC=3,以BD为腰作等腰△BDE交DC的延长线于点E,求BE的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】分析:根据平面直角坐标系中点的位置,即可做出判断.
详解:A.点(2,3)和点(3,2)表示同一个象限内的两个点,所以A错误;
B.点(﹣4,1)与点(4,1)关于x轴对称,所以B错误;
C.坐标轴上的点的横坐标和纵坐标可以有一个为0,也可以两个都为0,所以C错误.
D.第一象限内的点的横坐标与纵坐标均为正数,正确.
故选D.
点睛:解决本题的关键是要熟悉并确定点在坐标系中的位置,还涉及到点的对称问题,同时要牢记各象限内点的坐标的符号.
2、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
3、B
【解析】
根据只有符号不同的两个数互为相反数;开方运算,可得答案.
【详解】
A. 只有符号不同的两个数互为相反数,故A正确;
B. 2是4的平方根,故B正确;
C.=3是有理数,故C错误;
D. =3≠-3,故D错误;
故选B.
本题考查了相反数,平方根,立方根的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
4、A
【解析】
根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.
【详解】
∵第四象限内点的横坐标大于0,纵坐标小于0,
∴(3,4) 位于第四象限.
故选A.
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
5、B
【解析】
如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.
【详解】
如图,作DH⊥OB于H.
∵OC平分∠AOB,DE⊥OA,DH⊥OB,
∴DE=DH=4,
故选B.
本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线.
6、D
【解析】
试题解析:∵AB=8,BC=15,CA=17,
∴AB2=64,BC2=225,CA2=289,
∴AB2+BC2=CA2,
∴△ABC是直角三角形,因为∠B的对边为17最大,所以AC为斜边,∠ABC=90°,
∴△ABC的面积是×8×15=60,
故错误的选项是D.
故选D.
7、C
【解析】
利用完全平方公式的结构特征判断即可得到结果.
【详解】
解:A选项为偶次方和1的和,不能因式分解;
B选项不能因式分解;
C选项x2-2x+1=(x-1)2,可以因式分解;
D选项不能因式分解.
故选C.
本题题考查了因式分解一运用公式法,熟练掌握完全平方公式以及因式分解的概念是解本题的关键.
8、A
【解析】
试题分析:先根据平均数公式求得x的值,再根据方差的计算公式求解即可.
解:由题意得,解得
所以这组数据的方差
故选A.
考点:平均数,方差
点评:本题属于基础应用题,只需学生熟练掌握方差的计算公式,即可完成.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
【详解】
设点A(x,),则B(,),
∴AB=x-,
则(x-)•=5,
k=-1.
故答案为:-1.
本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
10、1:1
【解析】
试题分析:当AB:AD=1:1时,四边形MENF是正方形,
理由是:∵AB:AD=1:1,AM=DM,AB=CD,
∴AB=AM=DM=DC,
∵∠A=∠D=90°,
∴∠ABM=∠AMB=∠DMC=∠DCM=45°,
∴∠BMC=90°,
∵四边形ABCD是矩形,
∴∠ABC=∠DCB=90°,
∴∠MBC=∠MCB=45°,
∴BM=CM,
∵N、E、F分别是BC、BM、CM的中点,
∴BE=CF,ME=MF,NF∥BM,NE∥CM,
∴四边形MENF是平行四边形,
∵ME=MF,∠BMC=90°,
∴四边形MENF是正方形,
即当AB:AD=1:1时,四边形MENF是正方形,
故答案为:1:1.
点睛:本题考查了矩形的性质、正方形的判定、三角形中位线定理等知识,熟练应用正方形的判定方法是解题关键.
11、2.
【解析】
利用相似三角形的性质即可解决问题.
【详解】
∵△ABC∽△ADB,
∴,
∴AB2=AD•AC=2×4=8,
∵AB>0,
∴AB=2,
故答案为:2.
此题考查相似三角形的性质定理,相似三角形的对应边成比例.
12、 (1) ②;(2)2
【解析】
根据分式的混合运算法则进行计算即可.
【详解】
(1)②,应该是.
(2)解:原式=
.
当时,
此题考查分式的混合运算,解题关键在于掌握运算法则.
13、36°
【解析】
∵多边形ABCDE是正五边形,
∴∠BAE==108°,
∴∠1=∠2=(180°-∠BAE),
即2∠1=180°-108°,
∴∠1=36°.
三、解答题(本大题共5个小题,共48分)
14、(1)45°;(2)证明见解析;(3)
【解析】
(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.
【详解】
解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.
∵点O为正方形ABCD的中心,
∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.
∴△OBE≌△OCG(SAS).
∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.
∴∠EOG=90°,
∵△BEF的周长等于BC的长,
∴ EF=GF.
∴△EOF≌△GOF(SSS).
∴∠EOF=∠GOF=45°.
(2).连接OA.∵ 点O为正方形ABCD的中心,
∴∠OAE=∠FCO=45°.
∵∠BOE=∠COG, ∠AEO=∠BOE+∠OBE=∠BOE+45°,
∠COF=∠COG+∠GOF=∠COG+45°.
∴ ∠AEO=∠COF,且∠OAE=∠FCO.
∴ △AOE∽△CFO.
(3).∵△AOE∽△CFO,
∴==.
即AE= ×CO,CF=AO÷.
∵OE=OF,∴=.
∴AE=CO,CF=AO.
∴=.
点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.
15、 (1)、、;(2); (3); (4)
【解析】
(1)根据多项式乘多项式的乘法计算可得;
(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;
(3)将原式变形为,再利用所得规律计算可得;
(4)将原式变形为,再利用所得规律计算可得.
【详解】
(1)第1个:;
第2个:;
第3个:;
故答案为:、、;
(2)若n为大于1的正整数,
则,
故答案为:;
(3)
,
故答案为:;
(4)
,
故答案为:.
本题考查了多项式乘以多项式以及平方差公式,观察等式发现规律是解题关键.
16、(1)村庄能听到宣传. 理由见解析;(2)村庄总共能听到4分钟的宣传.
【解析】
(1)根据题意村庄A到公路MN的距离为800米<1000米,即可解答
(2)假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响
【详解】
解:(1)村庄能听到宣传.
理由:因为村庄A到公路MN的距离为800米<1000米,所以村庄能听到宣传
(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响,利用勾股定理进行计算即可解答
则AP=AQ=1000米,AB=800米.
∴BP=BQ==600米.
∴PQ=1200米.
、∴影响村庄的时间为:1200÷300=4(分钟).
∴村庄总共能听到4分钟的宣传.
此题考查解直角三角形,利用勾股定理进行计算是解题关键
17、(1);;(2)两人的说法都是错误的,见解析.
【解析】
(1)根据概率的公式计算“3点朝上”的频率和“5点朝上”的频率;
(2)根据随机事件的性质回答.
【详解】
(1)“点朝上”出现的频率是,
“点朝上”出现的频率是;
(2)两人的说法都是错误的,因为一个随机事件发生的概率是由这个随机事件自身决定的,并客观存在。随机事件发生的可能性大小由随机事件自身的属性即概率决定。因此去判断事件发生的可能性大小不能由此次实验中的频率决定。
用到的知识点为:频率=所求情况数与总情况数之比.频率能反映出概率的大小,但是要经过n次试验,而不是有数的几次,几次试验属于随机事件,不能反映事物的概率.
18、(1)P(1+t,0)(0≤t≤1);(2)当t=1时, PQ=2,当t=2时, PQ=3;(2)S=;(1)t=或s时,L落在第一象限的角平分线上.
【解析】
(1)求出OP的长即可解决问题;
(2)法两种情形分别求出MQ、PM的长即可解决问题;
(2)法三种情形:①如图1中,当0≤t≤1时,重叠部分是正方形PQLR;②如图2中,当1<t≤2时,重叠部分是四边形PQDE;③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,分别求解即可;
(1)根据OQ=PQ,构建方程即可解决问题.
【详解】
解:(1)如图1中,∵M(1,0),
∴OM=1.PM=t,
∴OP=1+t,
∴P(1+t,0)(0≤t≤1).
(2)当t=1时,MQ=2,MP=1,
∴PQ=2.
当t=2时,MQ=2,PM=2,
∴PQ=2+2=3.
(2)①如图1中,当0≤t≤1时,重叠部分是正方形PQLR,S=PQ2=9t2
②如图2中,当1<t≤2时,重叠部分是四边形PQDE,S=PQ•DQ=9t.
③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,S=AQ•AB=2[6-2(t-2)]=-6t+20.
综上所述,S=.
(1)L落在第一象限的角平分线上时,OQ=LQ=PQ,
∴1-2t=2t或2(t-2)=t+1-2(t-2),
解得t=或.
∴t=或s时,L落在第一象限的角平分线上.
本题考查四边形综合题、矩形的性质、正方形的性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会由方程的思想思考问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (x<0)
【解析】
连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB=3,
∵
∴|k|=3,
∵k<0,
∴k=-1.
∴反比例函数的解析式为 (x<0)
故答案为: (x<0).
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
20、1
【解析】
利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.
【详解】
解:△ABC的面积=3×4-×4×2-×3×1-×1×3
=12-4-1.1-1.1
=1.
故答案为1
本题考查了坐标与图形性质,主要是在平面直角坐标系中确定点的位置的方法和三角形的面积的求解.
21、(3,0)
【解析】
把点代入直线解析式,求出直线的表达式子,再根据点是直线与轴的交点,把代入直线表达式即可求解.
【详解】
解:把A(1,2)代入可得:
解得:
∴
∴把代入可得:
解得:
∴B(3,0)
故答案为(3,0)
本题主要考查了一次函数与坐标轴交点问题,通过一次函数所经过的点求一次函数的解析式是解题的关键.
22、.
【解析】
首先将原式变形,进而把已知代入,再利用二次根式的性质化简进而计算得出答案.
【详解】
解:∵m+3n=,
∴﹣m﹣3n
=
=
=,
故答案为:.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和整体代入思想的运用.
23、1
【解析】
把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
【详解】
∵点A(1,n)在一次函数y=3x﹣2的图象上,
∴n=3×1﹣2=1.
故答案为:1.
本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】
(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
依题意有 ,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y)+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
25、见解析
【解析】
如图1,作BD的垂直平分线交AB于E,交CD于F,则BD与EF互相垂直平分,则四边形BEDF为菱形;如图2,在DC上截取DM=DA,在AB上截取AN=AD,易得四边形ANMD为菱形,菱形BEDF和菱形ANMD满足条件.
【详解】
解:如图1,四边形BEDF为所作;
如图2,四边形ADMN为所作.
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
26、.
【解析】
利用勾股定理求出BD,可得DE=BD=5,在Rt△BCE中,利用勾股定理求出BE即可.
【详解】
解:∵四边形ABCD是矩形,
∴AB=DC=4,∠BCD=90°,
∴DE=BD==5,
∴CE=DE﹣CD=1,
在Rt△BCE中,BE=,
本题考查矩形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
朝上的点数
出现的次数
福建厦门华侨中学2024-2025学年九上数学开学监测模拟试题【含答案】: 这是一份福建厦门华侨中学2024-2025学年九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古乌海市海勃湾区数学九上开学联考试题【含答案】: 这是一份2025届内蒙古乌海市海勃湾区数学九上开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江嵊州蒋镇学校数学九上开学监测模拟试题【含答案】: 这是一份2024-2025学年浙江嵊州蒋镇学校数学九上开学监测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。