|试卷下载
终身会员
搜索
    上传资料 赚现金
    内蒙古翁牛特旗乌敦套海中学2025届数学九上开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    内蒙古翁牛特旗乌敦套海中学2025届数学九上开学监测模拟试题【含答案】01
    内蒙古翁牛特旗乌敦套海中学2025届数学九上开学监测模拟试题【含答案】02
    内蒙古翁牛特旗乌敦套海中学2025届数学九上开学监测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古翁牛特旗乌敦套海中学2025届数学九上开学监测模拟试题【含答案】

    展开
    这是一份内蒙古翁牛特旗乌敦套海中学2025届数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列函数中,是的正比例函数的是( )
    A.B.C.D.
    2、(4分)如图,O是正六边形ABCDEF的中心,下列三角形中可由△OBC平移得到的是( )
    A.△OCDB.△OABC.△OAFD.△OEF
    3、(4分)如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是( )
    A.5B.4C.3D.2
    4、(4分)如图,在矩形ABCD中,对角线相交于点,则AB的长是
    A.3cmB.6cmC.10cmD.12cm
    5、(4分)如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为( )
    A.B.C.D.
    6、(4分)如图, 四边形ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则四边形ABCD的周长为( )
    A.32B.16C.8D.4
    7、(4分)点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
    A.关于x轴对称B.关于y轴对称
    C.绕原点逆时针旋转D.绕原点顺时针旋转
    8、(4分)如图,在△ABC中,AB=AC,∠A=36°,以点B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD的度数是( )
    A.18°B.36°C.72°D.108°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.
    10、(4分)已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.
    11、(4分)计算-的结果是_________.
    12、(4分)点A(0,3)向右平移2个单位长度后所得的点A’的坐标为_____.
    13、(4分)要使分式的值为1,则x应满足的条件是_____
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知直线AB的函数解析式为,直线与x轴交于点A,与y轴交于点B.
    (1)求A、B两点的坐标;
    (2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),过点P作PE⊥x轴于点E,PF⊥y轴于点F,连接EF;
    ①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;
    ②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.
    15、(8分)已知:如图,E、F是▱ABCD的对角线AC上的两点,AF=CE.
    求证:(1)△ABE≌△CDF;
    (2)ED∥BF.
    16、(8分)如图,在平行四边形中,的平分线交于点,的平分线交于点.
    (1)若,,求的长.
    (2)求证:四边形是平行四边形.
    17、(10分)如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.
    (1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;
    (2)将 “AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.
    (3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.
    18、(10分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;
    (1)当点在边上时,①判断与的数量关系;
    ②当时,判断点的位置;
    (2)若正方形的边长为2,请直接写出点在边上时,的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
    20、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
    21、(4分)已知可以被10到20之间某两个整数整除,则这两个数是___________.
    22、(4分)如图,在矩形ABCD中,E是AD的中点,且若矩形ABCD的周长为48cm,则矩形ABCD的面积为______.
    23、(4分)在△ABC中,∠C=90°,若b=7,c=9,则a=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠1.
    (1)求证:AE=CF;
    (1)求证:四边形EBFD是平行四边形.
    25、(10分)已知函数.
    (1)若这个函数的图象经过原点,求的值
    (2)若这个函数的图象不经过第二象限,求的取值范围.
    26、(12分)如图,在矩形ABCD中,AB=1,对角线AC、BD相交于点O,过点O作EF⊥AC分别交射线AD与射线CB于点E和点F,联结CE、AF.
    (1)求证:四边形AFCE是菱形;
    (2)当点E、F分别在边AD和BC上时,如果设AD=x,菱形AFCE的面积是y,求y关于x的函数关系式,并写出x的取值范围;
    (3)如果△ODE是等腰三角形,求AD的长度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据正比例函数的定义:一般地,形如是常数,的函数叫做正比例函数,其中叫做比例系数可选出答案.
    【详解】
    解:、是的正比例函数,故此选项正确;
    、是一次函数,故此选项错误;
    、是反比例函数,故此选项错误;
    、是一次函数,故此选项错误;
    故选:.
    本题主要考查了正比例函数定义,关键是掌握正比例函数是形如是常数,的函数.
    2、C
    【解析】
    利用正六边形的性质得到图中的三角形都为全等的等边三角形,然后利用平移的性质可对各选项进行判断.
    【详解】
    解:∵O是正六边形ABCDEF的中心,
    ∴AD∥BC,AF∥CD∥BE,
    ∴△OAF沿FO方向平移可得到△OBC.
    故选:C.
    本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.
    3、A
    【解析】
    先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.
    【详解】
    ∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,
    ∴A(1,1),B(2,),
    又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,
    ∴C(1,),D(2,),
    ∴AC=k-1,BD=-,
    ∴S△AOC+S△ABD==3,
    ∴k=5,
    故选A.
    本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.
    4、A
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∴OA=OC=OB=OD=3,

    ∴△AOB是等边三角形,
    ∴AB=OA=3,
    故选A.
    点睛:有一个角等于得等腰三角形是等边三角形.
    5、A
    【解析】
    先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.
    【详解】
    解:∵BE⊥AC,CD⊥AC,
    ∴∠ACD=∠BEA=90°,
    ∴∠CDB+∠DCA=90°,
    又∵∠DAB=∠DAC+∠BAC=90°
    在△ACD和△AEB中,
    ∴△ACD≌△BEA(AAS)
    ∴AC=BE
    ∵△ABC的面积为8,
    ∴,
    解得BE=4,
    在Rt△ABE中,
    .
    故选择:A.
    本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.
    6、B
    【解析】
    首先证明,再由AE+EO=4,推出AB+BC=8即可解决问题.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,
    ∵AE=EB,

    ∵AE+EO=4,
    ∴2AE+2EO=8,
    ∴AB+BC=8,
    ∴平行四边形ABCD的周长=2×8=16,
    故选:B
    本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.
    7、C
    【解析】
    分析:根据旋转的定义得到即可.
    详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
    所以点A绕原点逆时针旋转90°得到点B,
    故选C.
    点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
    8、B
    【解析】
    由AB=AC,知道顶∠A的度数,就可以知道底∠C的度数,还知道BC=BD,就可以知道∠CDB的度数,在利用三角形的外角∠A+∠ABD=∠CDB,就可以求出ABD的度数
    【详解】
    解,∵AB=AC,∠A=36°,∴∠C=72°,又∵BC=BD,∴∠BDC=∠C=72°,
    又∵∠A+∠ABD=∠BDC ∴∠ABD=∠BDC-∠A=72°-36°=36°
    本题主要考查等腰三角形的性质,结合角度的关系进行求解
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4.1
    【解析】
    分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.
    【详解】
    若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;
    若众数为1,则数据为1、1、1、7,中位数为1,符合题意,
    此时平均数为=4.1;
    若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;
    故答案为:4.1.
    本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.
    10、1.
    【解析】
    连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.
    【详解】
    如图所示:连接BD.
    ∵E,F分别是AB,AD的中点,EF=5,
    ∴BD=2EF=1.
    ∵ABCD为矩形,
    ∴AC=BD=1.
    故答案为:1.
    本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.
    11、2
    【解析】
    先利用算术平方根和立方根进行化简,然后合并即可.
    【详解】
    解:原式=4-2=2
    故答案为:2
    本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.
    12、(2,3)
    【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减可得A′的坐标为(0+2,3).
    解:点A(0,3)向右平移2个单位长度后所得的点A′的坐标为(0+2,3),
    即(2,3),
    故答案为:(2,3).
    13、x=-1.
    【解析】
    根据题意列出方程即可求出答案.
    【详解】
    由题意可知:=1,
    ∴x=-1,
    经检验,x=-1是原方程的解.
    故答案为:x=-1.
    本题考查解分式方程,注意,别忘记检验,本题属于基础题型.
    三、解答题(本大题共5个小题,共48分)
    14、(1)A(4,0),B(0,8);(2)S =﹣4m+16,(0<m<4);(3),理由见解析
    【解析】
    试题分析:(1)根据坐标轴上点的特点直接求值,
    (2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;
    ②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.
    试题解析:
    (1)令x=0,则y=8,
    ∴B(0,8),
    令y=0,则﹣2x+8=0,
    ∴x=4,
    ∴A(4,0),
    (2)∵点P(m,n)为线段AB上的一个动点,
    ∴﹣2m+8=n,∵A(4,0),
    ∴OA=4,
    ∴0<m<4
    ∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);
    (3)存在,理由如下:
    ∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,
    ∴四边形OEPF是矩形,
    ∴EF=OP,
    当OP⊥AB时,此时EF最小,
    ∵A(4,0),B(0,8),
    ∴AB=4,
    ∵S△AOB=OA×OB=AB×OP,
    ∴OP= ,
    ∴EF最小=OP=.
    【点睛】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.
    15、(1)见解析;(2)见解析
    【解析】
    (1)根据已知条件得到AE=CF,根据平行四边形的性质得到∠DCF=∠BAE,根据全等三角形的判定定理即可得到结论;
    (2)根据全等三角形的性质得到BE=DF,∠AEB=∠CFD,根据平行四边形的判定和性质即可得到结论.
    【详解】
    证明:(1)∵AF=CE,
    ∴AF﹣EF=CE﹣EF,
    即AE=CF,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴∠DCF=∠BAE,
    在△ABE与△CDF中,
    ∵,


    ∴△ABE≌△CDF(SAS);
    (2)∵△ABE≌△CDF,
    ∴BE=DF,∠AEB=∠CFD,
    ∴∠BEF=∠DFE,
    ∴BE∥DF,
    ∴四边形DEBF是平行四边形,
    ∴ED∥BF.
    本题考查了平行四边形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
    16、(1);(2)证明见解析.
    【解析】
    (1)根据等腰三角形的性质即可求解;
    (2)根据角平分线的性质及平行线的判定得到,再根据即可证明.
    【详解】
    (1)解:∵四边形为平形四边形

    ∵平分


    ∴,

    (2)证明:∵四边形为平行四边形

    ∵平分
    又∴


    ∴四边形为平行四边形
    此题主要考查平行四边形的性质与判定,解题的关键是熟知平行四边形的性质定理.
    17、(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或(3)9s
    【解析】
    (1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
    (2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
    (3)因为VQ<VP,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.
    【详解】
    (1)当t=1时,AP=BQ=3,BP=AC=9,
    又∵∠A=∠B=90°,
    在△ACP与△BPQ中,,
    ∴△ACP≌△BPQ(SAS),
    ∴∠ACP=∠BPQ,
    ∴∠APC+∠BPQ=∠APC+∠ACP=90°,
    ∠CPQ=90°,
    则线段PC与线段PQ垂直.
    (2)设点Q的运动速度x,
    ①若△ACP≌△BPQ,则AC=BP,AP=BQ,

    解得,
    ②若△ACP≌△BPQ,则AC=BQ,AP=BP,
    解得,
    综上所述,存在或使得△ACP与△BPQ全等.
    (3)因为VQ<VP,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,
    设经过x秒后P与Q第一次相遇,
    ∵AC=BD=9cm,C,D分别是AE,BD的中点;
    ∴EB=EA=18cm.
    当VQ=1时,
    依题意得3x=x+2×9,
    解得x=9;
    当VQ=时,
    依题意得3x=x+2×9,
    解得x=12.
    故经过9秒或12秒时P与Q第一次相遇.
    本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.
    18、(1)①,理由详见解析;②点位于正方形两条对角线的交点处(或中点出),理由详见解析;(2)
    【解析】
    (1) ①过点作于点,于点,通过证可得ME=MF;
    ②点位于正方形两条对角线的交点处时,,可得;
    (2)当点F分别在BC的中点处和端点处时,可得M的位置,进而得出AM的取值范围。
    【详解】
    解:(1)。理由是:
    过点作于点,于点
    在正方形中,
    矩形为正方形

    ②点位于正方形两条对角线的交点处(或中点处)
    如图,是的中位线,
    又,
    此时,是中点,
    且,

    (2)当点F在BC中点时,M在AC,BD交点处时,此时AM最小, AM=AC= ; 当点F与点C重合时,M在AC,BD交点到点C的中点处,此时AM最大, AM= 。
    故答案为:
    本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键。
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m<
    【解析】
    当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2 .
    故答案为m<1/2 .
    20、
    【解析】
    :把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
    【详解】
    解:∵

    ∵关于x的方程的解是负数


    解得
    本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
    21、15和1;
    【解析】
    将利用平方差公式分解因式,根据可以被10到20之间的某两个整数整除,即可得到两因式分别为15和1.
    【详解】
    因式分解可得:=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),
    ∵24+1=1,24-1=15,
    ∴232-1可以被10和20之间的15,1两个数整除.
    本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.
    22、128
    【解析】
    根据AB=DC,∠A=∠D,AE=DE,利用SAS可判定△ABE≌△DCE,根据全等三角形的性质可得:∠AEB=∠DEC,再根据BE⊥CE,可得:∠BEC=90°,进而可得:∠AEB=∠DEC=45°,
    因此∠EBC=∠ECD=45°,继而可得:AB=AE,DC=DE,即AD=2AB,根据周长=48,可求得:BC=16,AB=8,最后根据矩形面积公式计算可得:S=16×8=128 cm².
    【详解】
    ∵AB=DC,∠A=∠D,AE=DE,
    ∴△ABE≌△DCE(SAS),
    ∴∠AEB=∠DEC,
    ∵BE⊥CE,
    ∴∠BEC=90°,
    ∵∠AEB+∠BEC+∠DEC=180°,
    ∴∠AEB=∠DEC=45°,
    ∴∠EBC=∠ECD=45°,
    ∴AB=AE,DC=DE,
    即AD=2AB,
    又∵周长=48,
    ∴BC=16,AB=8,
    S=16×8=128 cm²,
    故答案为:128.
    本题主要考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解决本题的关键是要熟练掌握矩形性质,全等三角形,等腰直角三角形的判定和性质.
    23、4
    【解析】
    利用勾股定理:a2+b2=c2,直接解答即可
    【详解】
    ∵∠C=90°
    ∴a2+b2=c2
    ∵b=7,c=9,
    ∴a===4
    故答案为4
    本题考查了勾股定理,对应值代入是解决问题的关键
    二、解答题(本大题共3个小题,共30分)
    24、(1)见详解;(1)见详解
    【解析】
    (1)通过证明△ADE≌△CBF,由全等三角的对应边相等证得AE=CF.
    (1)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.
    【详解】
    证明:(1)如图:
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,∠3=∠4
    ∵∠1=∠3+∠5,∠1=∠4+∠6,
    ∴∠1=∠1
    ∴∠5=∠6
    ∵在△ADE与△CBF中,∠3=∠4,AD=BC,∠5=∠6,
    ∴△ADE≌△CBF(ASA)
    ∴AE=CF
    (1)∵∠1=∠1,
    ∴DE∥BF
    又∵由(1)知△ADE≌△CBF,
    ∴DE=BF
    ∴四边形EBFD是平行四边形
    25、(1)的值为3;(2)的取值范围为:.
    【解析】
    (1)将原点坐标(0,0)代入解析式即可得到m的值;
    (2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.
    【详解】
    (1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,
    所求的m的值为3;
    (2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;
    ②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−所以m的取值范围为.
    此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.
    26、(1)见解析;(2);(3)AD的值为或.
    【解析】
    (1)由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
    (2)由cs∠DAC=,求出AE即可解决问题;
    (3)分两种情形分别讨论求解即可.
    【详解】
    (1)①证明:如图1中,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,OB=OD,
    ∴∠EDO=∠FBO,
    在△DOE和△BOF中,

    ∴△DOE≌△BOF,
    ∴EO=OF,∵OB=OD,
    ∴四边形EBFD是平行四边形,
    ∵EF⊥BD,OB=OD,
    ∴EB=ED,
    ∴四边形EBFD是菱形.
    (2)由题意可知:,,
    ∵,
    ∴,
    ∴,
    ∵AE≤AD,
    ∴,
    ∴x2≥1,
    ∵x>0,
    ∴x≥1.
    即(x≥1).
    (3)①如图2中,当点E在线段AD上时,ED=EO,则Rt△CED≌Rt△CEO,
    ∴CD=CO=AO=1,
    在Rt△ADC中,AD=.
    如图3中,当的E在线段AD的延长线上时,DE=DO,
    ∵DE=DO=OC,EC=CE,
    ∴Rt△ECD≌Rt△CEO,
    ∴CD=EO,
    ∵∠DAC=∠EAO,∠ADC=∠AOE=90°,
    ∴△ADC≌△AOE,
    ∴AE=AC,
    ∵EO垂直平分线段AC,
    ∴EA=EC,
    ∴EA=EC=AC,
    ∴△ACE是等边三角形,
    ∴AD=CD•tan30°=,
    综上所述,满足条件的AD的值为或.
    本题考查四边形综合题、矩形的性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
    题号





    总分
    得分
    相关试卷

    内蒙古翁牛特旗乌丹第一中学2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份内蒙古翁牛特旗乌丹第一中学2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年内蒙古翁牛特旗乌敦套海中学九年级数学第一学期期末监测模拟试题含答案: 这是一份2023-2024学年内蒙古翁牛特旗乌敦套海中学九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了如图,已知,若,那么的值是等内容,欢迎下载使用。

    内蒙古翁牛特旗乌敦套海中学2023-2024学年数学八上期末综合测试模拟试题含答案: 这是一份内蒙古翁牛特旗乌敦套海中学2023-2024学年数学八上期末综合测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列多项式能分解因式的是,以下运算正确的是,下列运算错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map