内蒙古乌海市海南区2025届九上数学开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列多项式能用完全平方公式进行分解因式的是( )
A.B.
C.D.
2、(4分)李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数B.众数C.方差D.中位数
3、(4分)在平面直角坐标系中,函数y=﹣2x+|a|+1的大致图象是( )
A.B.
C.D.
4、(4分)函数的图像经过A(3,4)和点B(2,7),则函数表达式为( )
A.B.C.D.
5、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,∠ADB=30°,E为BC边上一点,∠AEB=45°,CF⊥BD于F.下列结论:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正确的结论有( )
A.①②B.②③C.①②④D.①②③
6、(4分)在四边形ABCD中,对角线AC、BD相交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;这六个条件中,则下列各组组合中,不能推出四边形ABCD为菱形的是( )
A.①②⑤B.①②⑥C.③④⑥D.①②④
7、(4分)如图,直线与轴,轴分别交于点,,以为底边在轴右侧作等腰,将沿轴折叠,使点恰好落在直线上,则点的坐标为( )
A.B.C.D.
8、(4分)已知实数,若,则下列结论错误的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________.
10、(4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.
11、(4分)如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.
12、(4分)方程的解为_________.
13、(4分)函数与的图象如图所示,则的值为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的,假设从去年开始,连续三年(去年,今年,明年)该电子产品的价格下降率都相同.
(1)求这种电子产品的价格在这三年中的平均下降率.
(2)若两年前这种电子产品的价格是元,请预测明年该电子产品的价格.
15、(8分)如图,在中,点是边的中点,设
(1)试用向量表示向量,则 ;
(2)在图中求作:.
(保留作图痕迹,不要求写作法,但要写出结果)
16、(8分)(1)如图1,方格纸中的每个小方格都是边长为1个单位的正方形,的顶点以及点均在格点上.
①直接写出的长为______;
②画出以为边,为对角线交点的平行四边形.
(2)如图2,画出一个以为对角线,面积为6的矩形,且和均在格点上(、、、按顺时针方向排列).
(3)如图3,正方形中,为上一点,在线段上找一点,使得.(要求用无刻度的直尺画图,不准用圆规,不写作法,保留画图痕迹)
17、(10分)(1)因式分解:2a3﹣8a2+8a;
(2)解不等式组,并把解集在数轴上表示出来.
18、(10分)解不等式组,并把它的解集在数轴上表示出来.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)点P的坐标为,则点P到x轴的距离是________,点P到y轴的距离是________.
20、(4分)方程-x=1的根是______
21、(4分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.
22、(4分)如图,四边形ABCD沿直线AC对折后重合,如果AC,BD交于O,AB∥CD,则结论①AB=CD,②AD∥BC,③AC⊥BD,④AO=CO,⑤AB⊥BC,其中正确的结论是___(填序号).
23、(4分)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于________米.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,在第四象限内的矩形OABC,两边在坐标轴上,一个顶点在一次函数y=0.5x﹣3的图象上,当点A从左向右移动时,矩形的周长与面积也随之发生变化,设线段OA的长为m,矩形的周长为C,面积为S.
(1)试分别写出C、S与m的函数解析式,它们是否为一次函数?
(2)能否求出当m取何值时,矩形的周长最大?为什么?
25、(10分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题.
(1)该班共有 名学生;
(2)在图(1)中,将表示“步行”的部分补充完整;
(3)扇形图中表示骑车部分所占扇形的圆心角是 .
(4)如果小明所在年级共计800人,请你根据样本数据,估计一下该年级步行上学的学生人数是多少?
26、(12分)化简与计算:(1) ;(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用完全平方公式的结构特征判断即可得到结果.
【详解】
解:A选项为偶次方和1的和,不能因式分解;
B选项不能因式分解;
C选项x2-2x+1=(x-1)2,可以因式分解;
D选项不能因式分解.
故选C.
本题题考查了因式分解一运用公式法,熟练掌握完全平方公式以及因式分解的概念是解本题的关键.
2、D
【解析】
由一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数;接下来根据中位数的定义, 结合去掉一个最高分和一个最低分, 不难得出答案.
【详解】
解: 中位数是将一组数从小到大的顺序排列, 取中间位置或中间两个数的平均数得到,所以如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.
故选D.
本题主要考查平均数、众数、方差、中位数的定义,其中一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数.
3、A
【解析】
确定一次函数的比例系数的符号后利用其性质确定正确的选项即可.
【详解】
函数y=-2x+|a|+1中k=-2<0,b=|a|+1>0,
所以一次函数的图象经过一、二、四象限,
故选A.
考查了一次函数的性质,了解一次函数的图象与系数的关系是解答本题的关键,难度不大.
4、B
【解析】
利用待定系数法即可求解.
【详解】
把A(3,4)和点B(2,7)代入解析式得,解得
故解析式为
故选B.
此题主要考查一次函数解析式的求解,解题的关键是熟知待定系数法确定函数关系式.
5、D
【解析】
根据矩形的性质,由∠ADB=30°可得,△AOB和△COD都是等边三角形,再由∠AEB=45°,可得△ABE是等腰直角三角形,其边有特殊的关系,利用等量代换可以得出③AE=AO是正确的,①BE=CD是正确的,在正△COD中,CF⊥BD,可得DF=CD,再利用等量代换可得②BF=3DF是正确的,利用选项的排除法确定选项D是正确的.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AC=BD,AO=CO=BO=DO,∠ABC=∠ADC=∠BAD=∠BCD=90°,
∵∠AEB=45°,
∴∠BAE=∠AEB=45°
∴AB=BE=CD,AE=AB=CD,
故①正确,
∵∠ADB=30°,
∴∠ABO=60°且AO=BO,
∴△ABO是等边三角形,
∴AB=AO,
∴AE=AO,
故③正确,
∵△OCD是等边三角形,CF⊥BD,
∴DF=FO=OD=CD=BD,
∴BF=3DF,
故②正确,
根据排除法,可得选项D正确,
故选:D.
考查矩形的性质,含有30°角的直角三角形的特殊的边角关系、等边三角形的性质和判定等知识,排除法可以减少对④的判断,从而节省时间.
6、D
【解析】
根据题目中所给条件可得①②组合,③④组合都能判定四边形为平行四边形,再根据一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形进行判定.
【详解】
,,
四边形是平行四边形,
如果加上条件⑤可利用对角线互相垂直的平行四边形是菱形进行判定;
如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定;
,,
四边形是平行四边形,
如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定.
故选:.
此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
7、A
【解析】
由直线y=2x+4与y轴交于点B,可得OB=4,再根据△OBC是以OB为底的等腰三角形,可得点C的纵坐标为2,依据△OBC沿y轴折叠,使点C恰好落在直线AB上,即可得到点C的横坐标为1.
【详解】
解:∵直线y=2x+4与y轴交于点B,
∴B(0,4),
∴OB=4,
又∵△OBC是以OB为底的等腰三角形,
∴点C的纵坐标为2,
∵△OBC沿y轴折叠,使点C恰好落在直线AB上,
∴当y=2时,2=2x+4,
解得x=-1,
∴点C的横坐标为1,
∴点C的坐标为(1,2),
故选:A.
本题考查了等腰三角形的性质、翻折变换的性质、一次函数的性质;熟练掌握翻折变换和等腰三角形的性质是解决问题的关键.
8、C
【解析】
根据不等式的性质,可得答案.
【详解】
解:A.两边都加6,不等号的方向不变,故A正确;
B.两边都减2,不等号的方向不变,故B正确;
C.两边都乘﹣2,不等号的方向改变,故C错误;
D.两边都除以3,不等号的方向不变,故D正确.
故选C.
本题考查了不等式的性质,掌握不等式的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1 .
【解析】
分析:连接O1A,O1B,先证明△AO1C≌△BO1D,从而可得S四边形ACO1D=S△AO1B=S正方形ABEF=,然后可求阴影部分面积之和.
详解:如图,连接O1A,O1B.
∵四边形ABEF是正方形,
∴O1A=O1B, ∠AO1B=90°.
∵∠AO1C+∠AO1D=90°, ∠BO1D+∠AO1D=90°,
∴∠AO1C=∠BO1D.
在△AO1C和△BO1D中,
∵∠AO1C=∠BO1D,
O1A=O1B,
∠O1AC=∠O1BD=45°,
∴△AO1C≌△BO1D,
∴S四边形ACO1D=S△AO1B=S正方形ABEF=,
∴阴影部分面积之和等于×4=1.
故答案为:1.
点睛:本题考查了正方形的性质,全等三角形的判定与性质,证明△AO1C≌△BO1D是解答本题的关键.
10、.
【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
【详解】
解:根据勾股定理可得:
,即x2-8x+16+x2-4x+4= x2,
解得:x1=2(不合题意舍去),x2=10,
10-2=8(尺),
10-4=6(尺).
答:门高8尺,门宽6尺,对角线长10尺.
故答案为: .
本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解题的关键.
11、
【解析】
先根据直线的解析式求出点F的坐标,从而可得OF、CF的长,再根据矩形的性质、OC的长可得点E的横坐标,代入直线的解析式可得点E的纵坐标,从而可得CE的长,然后根据直角三角形的面积公式即可得.
【详解】
对于一次函数
当时,,解得
即点F的坐标为
四边形OABC是矩形
点E的横坐标为4
当时,,即点E的坐标为
则的面积是
故答案为:.
本题考查了一次函数的几何应用、矩形的性质等知识点,利用一次函数的解析式求出点E的坐标是解题关键.
12、
【解析】
此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.
【详解】
∵
∴
∴
∴
∴
故答案为:.
此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.
13、1
【解析】
将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.
【详解】
解: 把x=1代入得:y=1,
∴与的交点坐标为(1,1),
把x=1,y=1代入y=kx得k=1.
故答案是:1.
本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)元
【解析】
(1)设这种电子产品价格的平均下降率为,根据今年年底的价格是两年前的列方程求解即可;
(2)根据明年的价格=今年的价格×(1-平均下降率)即可.
【详解】
(1)设这种电子产品价格的平均下降率为,
由题意得
解得,(不合题意,舍去)
即这种电子产品价格的平均下降率为.
(2)(元)
预测明年该电子产品的价格为元
此题考查了由实际问题抽象出一元二次方程,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
15、 (1) ;(2)图见解析.
【解析】
(1)利用平行四边形的性质,三角形法则即可解决问题.
(2)根据三角形法则解决问题即可.
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵E是BC的中点,
∴BE=EC,
∵,,.
∴;
(2)如图:
,,
向量,向量即为所求.
本题考查作图-复杂作图,平行四边形的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
16、解:(1)①;②详见解析;(2)详见解析;(2)详见解析
【解析】
(1)①由勾股定理可得AB的长;
②连接AO,CO并延长一倍得到,再顺次连接成平行四边形;
(2)画一个对角线长,矩形两边长为,)的矩形即可;
(2)连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.
【详解】
解:(1)①由勾股定理可得;
②如图1.连接AO,CO并延长一倍得到,再顺次连接成平行四边形;
(2)如图2(对角线长,矩形两边长为,).
(2)如图2.连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.
本题考查了作图-作平行四边形和矩形,也考查了特殊四边形的性质.
17、(1);(2)1≤x<4,见解析
【解析】
(1)直接提取公因式2a,进而利用完全平方公式分解因式得出答案;
(2)分别解不等式进而得出不等式组的解集,在数轴上表示即可.
【详解】
解:(1)原式=,
故答案为:;
(2)由题意知,解不等式:,得:x≥1,
解不等式:,去分母得:,
移项得:,
解得:x<4,
∴不等式组的解集为:1≤x<4,
故答案为:1≤x<4,
在数轴上表示解集如下所示:
.
本题考查了因式分解、一元一次不等式组的解法,熟练掌握因式分解的方法及一元一次不等式的解法是解决本题的关键.
18、,数轴见解析.
【解析】
试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
试题解析:解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2 1
【解析】
根据在平面直角坐标系中,任何一点到x轴的距离等于这一点纵坐标的绝对值,到y轴的距离等于这一点横坐标的绝对值,即可解答本题.
【详解】
解:点P的坐标为,则点P到x轴的距离是2,点P到y轴的距离是1.
故答案为2;1.
本题考查在平面直角坐标系中,点到坐标轴的距离,比较简单.
20、x=3
【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
【详解】
解:整理得:=x+1,
方程两边平方,得:2x+10=x2+2x+1,
移项合并同类项,得:x2=9,
解得:x1=3,x2=-3,
经检验,x2=-3不是原方程的解,
则原方程的根为:x=3.
故答案为:x=3.
本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
21、第三象限
【解析】分析:
根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.
详解:
∵直线y=kx+b经过第一、三、四象限,
∴k>0,b<0,
∴直线y=bx+k经过第一、二、四象限,
∴直线y=bx+k不经过第三象限.
故答案为:第三象限.
点睛:熟知:“直线y=kx+b在平面直角坐标系中所经过的象限与k、b的值的关系”是解答本题的关键.
22、①②③④
【解析】
由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA,由平行线的性质可知∠BAC=∠DCA,从而得到∠ACB=∠BAC,故此AB=BC,从而可知四边形ABCD为菱形,最后依据菱形的性质判断即可.
【详解】
由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA.
∵AB∥DC,
∴∠BAC=∠DCA.
∴∠BCA=∠BAC.
∴AB=BC.
∴AB=BC=CD=AD.
∴四边形ABCD为菱形.
∴AD∥BC,AB=CD,AC⊥BD,AO=CO.
故答案为①②③④
本题主要考查的是翻折的性质、菱形的性质和判定、等腰三角形的判定、平行线的性质,证得四边形ABCD为菱形是解题的关键.
23、6
【解析】
由菱形花坛ABCD的周长是24米,∠BAD=60°,可求得边长AD的长,AC⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.
【详解】
解:∵菱形花坛ABCD的周长是24米,∠BAD=60°,
∴AC⊥BD,AC=2OA,∠CAD=∠BAD=30°,AD=6米,
∴OA=AD•cs30°=6×=3米,
∴AC=2OA=6米.
故答案为:6.
此题考查了菱形的性质以及三角函数的应用.熟知菱形的对角线互相垂直且平分是解此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)C=m+6,面积S=﹣0.5m2+3m, C是m的一次函数,S不是m的一次函数;(2)不能求出当m取何值时,矩形的周长最大.
【解析】
(1)由题意可知A(m,0),B(m,0.5m﹣3),从而得AB=3﹣0.5m,继而根据矩形的周长公式和面积公式进行求解可得相应的函数解析式,然后再根据一次函数的概念进行判断即可;
(2)先确定出m的取值范围为0<m<6,根据(1)中的周长,可知m越大周长越大,但m没有是大值,因此不能求出当m取何值时,矩形的周长最大.
【详解】
(1)由题意,可知A(m,0),B(m,0.5m﹣3),
则AB=|0.5m﹣3|=3﹣0.5m,
∴矩形的周长C=2(OA+AB)=2(m+3﹣0.5m)=m+6,
面积S=OA•AB=m(3﹣0.5m)=﹣0.5m2+3m,
∴C是m的一次函数,S不是m的一次函数;
(2)不能求出当m取何值时,矩形的周长最大.
∵矩形OABC在第四象限内,
∴,
∴0<m<6,
又C=m+6,
∴不能求出当m取何值时,矩形的周长最大.
本题考查了一次函数的应用——几何问题,熟练掌握矩形的周长公式以及面积公式是解题的关键.
25、(1)50;(2)见解析;(3)108°;)(4)160.
【解析】
(1)根据乘车的人数是25,所占的百分比是50%,即可求得总人数;
(2)利用总人数乘以步行对应的百分比即可求得步行的人数,从而补全统计图;
(3)根据三部分百分比的和是1求得“骑车”对应的百分比,再乘以360°可得答案;
(4)利用总人数800乘以步行对应的百分比即可.
【详解】
解:(1)该班总人数是:25÷50%=50(人),
故答案为:50;
(2)步行的人数是:50×20%=10(人).
;
(3)“骑车”部分所对应的百分比是:1﹣50%﹣20%=30%,
所以扇形图中表示骑车部分所占扇形的圆心角为360°×30%=108°,
故答案为:108°;
(4)估计该年级步行上学的学生人数是:800×20%=160(人).
本题考查的是条形统计图和扇形统计图的综合运用以及样本估计总计.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
26、(1);(2).
【解析】
(1)根据二次根式的化简的方法可以解答本题;
(2)根据二次根式的乘法、除法和加法可以解答本题.
【详解】
解:(1)( x≥0,y≥0)
=
=5xy;
(2)
=
=6×+4×
=3+8
=11.
本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.
题号
一
二
三
四
五
总分
得分
批阅人
平均数
中位数
众数
方差
8.5分
8.3分
8.1分
0.15
2025届内蒙古乌海市海勃湾区数学九上开学联考试题【含答案】: 这是一份2025届内蒙古乌海市海勃湾区数学九上开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年内蒙古乌海市海南区数学九年级第一学期期末达标测试试题含答案: 这是一份2023-2024学年内蒙古乌海市海南区数学九年级第一学期期末达标测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列事件中,是必然事件的是,若,那么的值是等内容,欢迎下载使用。
2022-2023学年内蒙古乌海市海南区八年级(上)期末数学试卷(含解析): 这是一份2022-2023学年内蒙古乌海市海南区八年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。