![江苏省泗阳县王集中学2024年数学九年级第一学期开学预测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16284826/0-1729725555005/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泗阳县王集中学2024年数学九年级第一学期开学预测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16284826/0-1729725555056/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泗阳县王集中学2024年数学九年级第一学期开学预测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16284826/0-1729725555065/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省泗阳县王集中学2024年数学九年级第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在Rt△ABC中,∠A=90°,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,若AE=1,则BE的长为( )
A.2B.C.D.1
2、(4分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
A.B.2C.D.2
3、(4分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:
①四边形AECF为平行四边形;
②∠PBA=∠APQ;
③△FPC为等腰三角形;
④△APB≌△EPC;
其中正确结论的个数为( )
A.1B.2C.3D.4
4、(4分)若点A(3,y1),B(﹣2,y2)都在直线y=﹣x+n上,则y1与y2的大小关系是( )
A.y1<y2B.y1>y2
C.y1=y2D.以上都有可能
5、(4分)下列图形中,既是轴对称图图形又是中心对称图形的是( )
A.B.C.D.
6、(4分)如图,在▱ABCD中,AD=8,点E,F分别是AB,AC的中点,则EF等于( )
A.2B.3C.4D.5
7、(4分)下列等式一定成立的是( )
A.B.C.D.
8、(4分)下列关于变量x,y的关系,其中y不是x的函数的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.
10、(4分)如图,在四边形中,,,,,且,则______度.
11、(4分)一次函数 的图象如图所示,则关于的不等式的解集为__________.
12、(4分)若x+y=1,xy=-7,则x2y+xy2=_____________.
13、(4分)□ABCD 中,AB=6,BC=4,则□ABCD 的周长是____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)按指定的方法解下列一元二次方程:
(1)(配方法) (2)(公式法)
15、(8分)化简求值:,其中;
16、(8分)在图中网格上按要求画出图形,并回答问题:
(1)如果将三角形平移,使得点平移到图中点位置,点、点的对应点分别为点、点,请画出三角形;
(2)画出三角形关于点成中心对称的三角形.
(3)三角形与三角形______(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点.
17、(10分)探索发现:
……
根据你发现的规律,回答下列问题:
(1)= ,= ;
(2)利用你发现的规律计算:
(3)利用规律解方程:
18、(10分)(1)分解因式:;
(2)化简:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当0<m<3时,一元二次方程x2+mx+m=0的根的情况是_______.
20、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
21、(4分)使二次根式有意义的x的取值范围是_____.
22、(4分)一组数据:3,5,9,12,6的极差是_________.
23、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,连接.
(1)证明:;
(2)当点在何处时,的值最小,并说明理由;
(3)当的最小值为时,则正方形的边长为___________.
25、(10分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.
(1)求证:AE=BF;
(2)当∠BAG=30°,且AB=2时,求EF-FG的值.
26、(12分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.
(1)求这个一次函数的解析式;
(2)求此函数与x轴,y轴围成的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
求出∠ACB,根据线段垂直平分线的性质求出BE=CE,推出∠BCE=∠B=30°,求出∠ACE,即可求出CE的长,即可求得答案.
【详解】
∵在Rt△ABC中,∠A=90°,∠B=30°,
∴∠ACB=60°,
∵DE垂直平分斜边BC,
∴BE=CE,
∴∠BCE=∠B=30°,
∴∠ACE=60°﹣30°=30°,
在Rt△ACE中,∠A=90°,∠ACE=30°,AE=1,
∴CE=2AE=2,
∴BE=CE=2,
故选A.
本题考查了三角形内角和定理,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出CE的长.
2、C
【解析】
在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.
【详解】
在Rt△ACD中,∠A=45°,CD=1,
则AD=CD=1,
在Rt△CDB中,∠B=30°,CD=1,
则BD=,
故AB=AD+BD=+1.
故选C.
本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.
3、B
【解析】
分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;
②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;
③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;
④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.
详解:①如图,EC,BP交于点G;
∵点P是点B关于直线EC的对称点,
∴EC垂直平分BP,
∴EP=EB,
∴∠EBP=∠EPB,
∵点E为AB中点,
∴AE=EB,
∴AE=EP,
∴∠PAB=∠PBA,
∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,
∴∠PAB+∠PBA=90°,
∴AP⊥BP,
∴AF∥EC;
∵AE∥CF,
∴四边形AECF是平行四边形,
故①正确;
②∵∠APB=90°,
∴∠APQ+∠BPC=90°,
由折叠得:BC=PC,
∴∠BPC=∠PBC,
∵四边形ABCD是正方形,
∴∠ABC=∠ABP+∠PBC=90°,
∴∠ABP=∠APQ,
故②正确;
③∵AF∥EC,
∴∠FPC=∠PCE=∠BCE,
∵∠PFC是钝角,
当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,
如右图,△PCF不一定是等腰三角形,
故③不正确;
④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,
∴Rt△EPC≌△FDA(HL),
∵∠ADF=∠APB=90°,∠FAD=∠ABP,
当BP=AD或△BPC是等边三角形时,△APB≌△FDA,
∴△APB≌△EPC,
故④不正确;
其中正确结论有①②,2个,
故选B.
点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.
4、A
【解析】
结合题意点A(3,y1),B(﹣1,y1)都在直线y=﹣x+n上,利用一次函数的增减性即可解决问题.
【详解】
∵直线y=﹣x+n,
﹣<0,
∴y随x的增大而减小,
∵3>﹣1,
∴y1<y1.
故选:A.
本题考查一次函数图象上的点的特征,解题的关键是学会利用一次函数的增减性解决问题,属于中考常考题型.
5、D
【解析】
结合轴对称图形和中心对称图形的定义求解观察各个图形,即可完成解答.
【详解】
A、不是轴对称图形,是中心对称图形,故A错误;
B、是轴对称图形,但不是中心对称图形,故B错误;
C、既不是轴对称图形,也不是中心对称图形,故C正确;
D、既是轴对称图形又是中心对称图形,故D正确.
故选D.
本题考查图形对称性的判断, 中心对称图形满足绕着中心点旋转180°后能与自身重合,而若一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就是轴对称图形.
6、C
【解析】
利用平行四边形性质得到BC长度,然后再利用中位线定理得到EF
【详解】
在▱ABCD中,AD=8,得到BC=8,因为点E,F分别是AB,AC的中点,所以EF为△ABC的中位线,EF=,故选C
本题主要考查平行四边形性质与三角形中位线定理,属于简单题
7、A
【解析】
根据分式的基本性质逐一判断即可.
【详解】
解:约分正确,故A正确,符号处理错误,故B错误,根据分式的基本性质明显错误,故C错误,根据分式的基本性质也错误,故D错误.
故选:A.
本题考查的是分式的基本性质对约分的要求,掌握分式的基本性质是解题关键.
8、C
【解析】
根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.
【详解】
解:选项ABD中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;只有选项C中,x取1个值,y有2个值与其对应,故y不是x的函数.
故选C.
此题主要考查了函数的定义,正确掌握函数定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8 P1(0,-4),P2(-4,-4),P3(4,4)
【解析】
解:如图
∵△AOE的面积为4,函数y=的图象过一、三象限,
∴S△AOE=•OE•AE=4,
∴OE•AE=8,
∴xy=8,
∴k=8,
∵函数y=2x和函数y=的图象交于A、B两点,
∴2x=,
∴x=±2,
当x=2时,y=4,当x=-2时,y=-4,
∴A、B两点的坐标是:(2,4)(-2,-4),
∵以点B、O、E、P为顶点的平行四边形共有3个,
∴满足条件的P点有3个,分别为:
P1(0,-4),P2(-4,-4),P3(4,4).
故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).
本题考查反比例函数综合题.
10、1
【解析】
根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.
【详解】
∵AB=2,BC=2,∠ABC=90°,
∴AC=,,∠BAC=45°,
∵12+(2)2=32,
∴∠DAC=90°,
∴∠BAD=90°+45°=1°,
故答案是:1.
考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
11、x≥1
【解析】
由图象得出解集即可.
【详解】
由图象可得再x轴下方,即x≥1的时候,
故答案为: x≥1.
本题考查一次函数图象的性质,关键在于牢记基础知识.
12、﹣7
【解析】
∵x+y=1,xy=﹣7,
∴x2y+xy2=xy(x+y)=-7×1=-7.
13、1
【解析】
根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得的周长为1.
【详解】
∵四边形ABCD是平行四边形,
∴CD=AB=6,AD=BC=4,
∴的周长为1.
故答案为1.
本题考查平行四边形的性质:平行四边形的对边相等.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2),
【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;
(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.
【详解】
(1)
∴
解得,,;
(2)
在这里,,b=-2,
∴
解得,,
本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:
15、,-4
【解析】
首先通过约分和通分来达到简化分式的目的,然后将代入即可.
【详解】
原式
当时
原式
.
此题主要考查分式的化简求值,熟练掌握,即可解题.
16、(1)见详解;(2)见详解;(3)是,见详解
【解析】
(1)由题意得出,需将点B与点C先向左平移3个单位,再向下平移1个单位,据此可得;
(2)分别作出三顶点分别关于点D的对称点,再首尾顺次连接可得;
(3)连接两组对应点即可得.
【详解】
解:(1)如图所示,即为所求.
(2)如图所示,即为所求;
(3)是,如图所示,与是关于点成中心对称.
本题主要考查作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点.
17、(1);(2);(1)见解析.
【解析】
(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和
(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.
(1)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.
【详解】
解:(1), ;
故答案为
(2)原式= ;
(1)已知等式整理得:
所以,原方程即: ,
方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,
解得:x=1,
检验:把x=1代入x(x+5)=24≠0,
∴原方程的解为:x=1.
本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.
18、(1) ;(2) .
【解析】
(1)先提取公因式,再根据完全平方公式分解即可;
(2)原式通分并利用分式的加法法则计算即可得到结果
【详解】
解:(1)
=
= ;
(2)
=
=
=
= .
本题考查分解因式和分式的加法运算,能灵活运用知识点进行计算和化简是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、无实数根
【解析】
根据一元二次方程根的判别式判断即可
【详解】
一元二次方程x2+mx+m=0,则△=m2-4m=(m-2)2-4,当0<m<3时,△<0,故无实数根
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
20、y=2x-1
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=2x+b.
把(5,1)代入直线解析式得1=2×5+b,
解得 b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
21、
【解析】
试题分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
考点:二次根式有意义的条件.
22、1
【解析】
根据极差的定义求解.
【详解】
解:数据:3,5,1,12,6,所以极差=12-3=1.
故答案为:1.
本题考查了极差的定义,它反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.
23、13
【解析】
试题解析:
故答案为
点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)当点位于与的交点处时,的值最小,理由见解析;(3).
【解析】
(1) 由题意得MB=NB,∠ABN=15°, 所以∠EBN=45°, 容易证出△AMB≌△ENB;
(2)根据"两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长;
(3)过E点作EF⊥BC交CB的延长线于F,由题意求出∠EBF=30°, 设正方形的边长为x,在Rt△EFC中,根据勾股定理求得正方形的边长为.
【详解】
解:(1)∵是等边三角形,
∴,
∵,
∴,即.
又∵,
∴;
(2)如图,连接,当点位于与的交点处时,的值最小.
理由如下:
连接,
由(1)知,,
∴.
∵,
∴是等边三角形,
∴.
∴根据“两点之间线段最短”,得最短.
当点位于与的交点处时,的值最小,即等于的长.
(3)正方形的边长为边.
过点作交的延长线于,
∴.
设正方形的边长为,则,.
在中,
∵,
∴,
解得,(舍去负值).
∴正方形的边长为.
此题是四边形的综合题,考查里正方形的性质,等边三角形的性质,全等三角形的判定及性质,勾股定理,最短路径问题,解题中注意综合各知识点.
25、(1)证明见解析;(2)EF-FG=-1.
【解析】
分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;
(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.
详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.
又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.
∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;
(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.
∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.
点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.
26、(1)y=2x+1;(2)
【解析】
(1)利用待定系数法即可求出一次函数的解析式;
(2)利用一次函数解析式求出此函数图象与两轴的交点坐标,再利用三角形的面积公式即可得出答案.
【详解】
(1)设一次函数的解析式为:y=kx+b,
将点A,点B的坐标代入解析式得:
,
解得:,
所以直线的解析式为:y=2x+1,
(2)对于直线y=2x+1,
令x=0,解得:y=1,
令y=0,解得:,
所以函数与x轴,y轴围成的三角形的面积为:.
本题考查了待定系数法求一次函数解析式及一次函数图象上点的坐标特征.熟练应用待定系数法求一次函数解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
2024年江苏省泗阳县王集中学数学九上开学预测试题【含答案】: 这是一份2024年江苏省泗阳县王集中学数学九上开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省泗阳县九年级数学第一学期开学调研模拟试题【含答案】: 这是一份2024年江苏省泗阳县九年级数学第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省泗阳县王集中学2023-2024学年九上数学期末统考模拟试题含答案: 这是一份江苏省泗阳县王集中学2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了如果两个相似三角形的周长比是1,解方程22=3的最适当的方法是,抛物线y=ax2+bx+c等内容,欢迎下载使用。