终身会员
搜索
    上传资料 赚现金

    2025届江苏省汇文实中学九年级数学第一学期开学预测试题【含答案】

    立即下载
    加入资料篮
    2025届江苏省汇文实中学九年级数学第一学期开学预测试题【含答案】第1页
    2025届江苏省汇文实中学九年级数学第一学期开学预测试题【含答案】第2页
    2025届江苏省汇文实中学九年级数学第一学期开学预测试题【含答案】第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省汇文实中学九年级数学第一学期开学预测试题【含答案】

    展开

    这是一份2025届江苏省汇文实中学九年级数学第一学期开学预测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一元二次方程有实数根,则实数的取值范围是( )
    A.B.C.D.
    2、(4分)一个正多边形的内角和是1440°,则它的每个外角的度数是( )
    A.30° B.36° C.45° D.60°
    3、(4分)下列各组数是勾股数的是( )
    A.2,3,4
    B.4,5,6
    C.3.6,4.8,6
    D.9,40,41
    4、(4分)下列方程中是一元二次方程的是( )
    A.2x+1=0B.x2+y=1C.x2+2=0D.
    5、(4分)为了了解某校学生的课外阅读情况,随机抽查了名学生周阅读用时数,结果如下表:
    则关于这名学生周阅读所用时间,下列说法正确的是( )
    A.中位数是B.众数是C.平均数是D.方差是
    6、(4分)某市一周日最高气温如图所示,则该市这周的日最高气温的众数是( )
    A.25B.26C.27D.28
    7、(4分)下列各式中,最简二次根式是( )
    A.B.C.D.
    8、(4分)如图,的对角线与相交于点,,垂足为,,,,则的长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
    10、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.
    11、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.
    12、(4分)图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.
    (1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______
    (2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.
    13、(4分)若关于的一元二次方程有一个根为 ,则________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.
    (1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;
    (2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.
    求证:BF=AB+DF;
    若AD=AB,试探索线段DF与FC的数量关系.

    15、(8分)如图①,在正方形中,点,分别在、上,且.
    (1)试探索线段、的关系,写出你的结论并说明理由;
    (2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.
    16、(8分)图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.
    (1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;
    (2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;
    (3)图①中所画的矩形的面积为 ;图②中所画的菱形的周长为 .
    17、(10分)如图,城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡、从城往、两乡运肥料的费用分别是元/吨和元/吨;从城往、两多运肥料的费用分别是元/吨和元/吨,现乡需要肥料吨,乡需要肥料吨,怎样调运可使总运费最少?
    18、(10分)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.
    (1) 若CP=CD,求证:△DBP是等腰三角形;
    (2) 在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,,平分,点为中点,则_____.
    20、(4分)如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.
    21、(4分)若一次函数的图象不经过第二象限,则的取值范围为_________0.
    22、(4分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式_____.
    23、(4分)分解因时:=__________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)平面直角坐标系中,O为坐标原点,点A(3,4),点B(6,0).
    (1)如图①,求AB的长;
    (2)如图2,把图①中的△ABO绕点B顺时针旋转,使O的对应点M恰好落在OA的延长线上,N是点A旋转后的对应点;
    ①求证:四边形AOBN是平行四边形;
    ②求点N的坐标.
    (3)点C是OB的中点,点D为线段OA上的动点,在△ABO绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围.(直接写出结果)
    25、(10分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图1,直线,点,在直线上,点,在直线上,若,则四边形是半对角四边形.
    (1)如图1,已知,,,若直线,之间的距离为,则AB的长是____,CD的长是______;
    (2)如图2,点是矩形的边上一点,,.若四边形为半对角四边形,求的长;
    (3)如图3,以的顶点为坐标原点,边所在直线为轴,对角线所在直线为轴,建立平面直角坐标系.点是边上一点,满足.
    ①求证:四边形是半对角四边形;
    ②当,时,将四边形向右平移个单位后,恰有两个顶点落在反比例函数的图象上,求的值.
    26、(12分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
    请你根据图中的信息,解答下列问题:
    (1)补全条形图;
    (2)直接写出在这次抽测中,测试成绩的众数和中位数;
    (3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由一元二次方程根的判别式△≥0,结合一元二次方程的定义,即可求出k的取值范围.
    【详解】
    解:由题意得:,
    ,,
    ∴解得:.
    故选:D.
    本题考查了一元二次方程根的判别式,以及一元二次方程的定义,解题的关键是熟练掌握根的判别式求参数的取值范围.
    2、B
    【解析】
    先设该多边形是n边形,根据多边形内角和公式列出方程,求出n的值,即可求出多边形的边数,再根据多边形的外角和是360°,利用360除以边数可得外角度数.
    【详解】
    设这个多边形的边数为n,则
    (n-2)×180°=1440°,
    解得n=1.
    外角的度数为:360°÷1=36°,
    故选B.
    此题考查了多边形的内角与外角,关键是根据多边形的内角和公式(n-2)•180°和多边形的外角和都是360°进行解答.
    3、D
    【解析】
    利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.
    4、C
    【解析】
    本题根据一元二次方程的定义求解.
    一元二次方程必须满足两个条件:
    (1)未知数的最高次数是2;
    (2)二次项系数不为1.
    由这两个条件得到相应的关系式,再求解即可.
    【详解】
    A、该方程是一元一次方程,故本选项错误.
    B、该方程是二元二次方程,故本选项错误.
    C、该方程是一元二次方程,故本选项正确.
    D、该方程分式方程,故本选项错误.
    故选C.
    本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).
    5、D
    【解析】
    A:根据中位数、众数、平均数以及方差的概念以及求解方法逐一求出进而进行判断即可.
    【详解】
    这10名学生周阅读所用时间从大到小排列,可得
    4、4、4、5、5、5、5、8、8、12,
    ∴这10名学生周阅读所用时间的中位数是:(5+5)÷2=10÷2=5,
    ∴选项A不正确;
    ∵这10名学生周阅读所用时间出现次数最多的是5小时,
    ∴这10名学生周阅读所用时间的众数是5,
    ∴选项B不正确;
    ∵(4×3+5×4+8×2+12)÷10=60÷10=6
    ∴这10名学生周阅读所用时间的平均数是6,
    ∴选项C不正确;
    ∵×[3×(4-6)2+4×(5-6)2+2×(8-6)2+(12-6)2]=6,
    ∴这10名学生周阅读所用时间的方差是6,
    ∴选项D正确,
    故选D.
    本题考查了加权平均数、中位数和众数、方差等,熟练掌握相关概念以及求解方法是解题的关键.
    6、A
    【解析】
    分析:根据众数是一组数据中出现次数最多的那个数求解即可.
    详解: ∵25出现了3次,出现的次数最多,
    ∴周的日最高气温的众数是25.
    故选A.
    点睛:本题考查了众数的定义,熟练掌握一组数据中出现次数最多的那个数是众数是解答本题的关键. 众数可能没有,可能有1个,也可能有多个.
    7、C
    【解析】
    根据最简二次根式的定义逐个判断即可.最简二次根式满足两个条件,一是被开方式不含能开的尽方的因式,二是被开方式不含分母.
    【详解】
    A、 =,不是最简二次根式,故本选项不符合题意;
    B、=2,不是最简二次根式,故本选项不符合题意;
    C、是最简二次根式,故本选项符合题意;
    D、=2,不是最简二次根式,故本选项不符合题意;
    故选C.
    本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.
    8、D
    【解析】
    ∵四边形ABCD是平行四边形,,
    .
    又,
    在中,,
    故选D.
    错因分析:中等题。选错的原因是:1.对平行四边形的性质没有掌握;2.不能利用勾股定理的逆定理得出;3.未能利用的两种计算方法得到线段间的关系.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=2x-3.
    【解析】
    根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.
    【详解】
    ∵AB=2,点A的坐标为(0,1),
    ∴OB=1,∴点B坐标为(0,-1),
    ∵点E(2,1),
    ∴AE=2,ED=AD-AE=1,
    ∵EF平分矩形ABCD的面积,
    ∴BF=DE,
    ∴点F的坐标为(1,-1),
    设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,

    解得k=2,b=-3
    ∴EF的解析式为y=2x-3.
    故答案为:y=2x-3.
    本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.
    10、(2,−2)或(6,2).
    【解析】
    设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.
    【详解】
    ∵一次函数解析式为线y=-x+4,
    令x=0,解得y=4
    ∴B(0,4),
    令y=0,解得x=4
    ∴A(4,0),
    如图一,∵四边形OADC是菱形,
    设C(x,-x+4),
    ∴OC=OA=,
    整理得:x2−6x+8=0,
    解得x1=2,x2=4,
    ∴C(2,2),
    ∴D(6,2);
    如图二、如图三,∵四边形OADC是菱形,
    设C(x,-x+4),
    ∴AC=OA=,
    整理得:x2−8x+12=0,
    解得x1=2,x2=6,
    ∴C(6,−2)或(2,2)
    ∴D(2,−2)或(−2,2)
    ∵D是y轴右侧平面内一点,故(−2,2)不符合题意,
    故答案为(2,−2)或(6,2).
    本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.
    11、1
    【解析】
    过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.
    【详解】
    解:过点D作DE⊥BC于E
    由题意可知:CD平分∠ACB

    ∴DE=AD=3

    ∴=
    故答案为:1.
    此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.
    12、 (1);(2)见解析.
    【解析】
    (1)利用等边三角形的性质,解直角三角形即可解决问题.
    (2)利用数形结合的思想解决问题即可(答案不唯一).
    【详解】
    解:(1)AB=2×1×cs30°=,
    故答案为:.
    (2)如图②中,△DEF即为所求.
    本题考查作图——应用与设计,等边三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    13、4
    【解析】
    根据一元二次方程的解的定义,把x=0代入x2+mx+2m-4=0得到关于m的一次方程2m-4=0,然后解一次方程即可.
    【详解】
    把代入,
    得2m-4=0
    解得m=2
    本题考查一元二次方程的解,熟练掌握计算法则是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、正方形
    【解析】
    分析:(1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,理由为:由折叠得到两对边相等,三个角为直角,确定出四边形ABEG为矩形,再由矩形对边相等,等量代换得到四条边相等,即邻边相等,即可得证;
    (2)①如图2,连接EF,由ABCD为矩形,得到两组对边相等,四个角为直角,再由E为AD中点,得到AE=DE,由折叠的性质得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG与直角△EDF全等,利用全等三角形对应边相等得到DF=FG,由BF=BG+GF,等量代换即可得证;
    ②CF=DF,理由为:不妨假设AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,进而表示出BF,CF,在直角△BCF中,利用勾股定理列出关系式,整理得到a=2b,由CD-DF=FC,代换即可得证.
    详解:(1)正方形;
    (2)①如图2,连结EF,
    在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,
    ∵E是AD的中点,
    ∴AE=DE,
    ∵△ABE沿BE折叠后得到△GBE,
    ∴BG=AB,EG=AE=ED,∠A=∠BGE=90°
    ∴∠EGF=∠D=90°,
    在Rt△EGF和Rt△EDF中,
    ∵EG=ED,EF=EF,
    ∴Rt△EGF≌Rt△EDF,
    ∴ DF=FG,
    ∴ BF=BG+GF=AB+DF;
    ②不妨假设AB=DC=,DF=,
    ∴AD=BC=,
    由①得:BF=AB+DF
    ∴BF=,CF=,
    在Rt△BCF中,由勾股定理得:
    ∴,
    ∴,
    ∵,
    ∴,即:CD=DF,
    ∵CF=DF-DF,
    ∴3CF=DF.
    点睛:此题属于四边形综合题,涉及的知识有:矩形的性质,折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握图形的判定与性质是解本题的关键.
    15、(1)AF=DE,AF⊥DE,理由见详解;(2)四边形HIJK是正方形,补图、理由见详解.
    【解析】
    (1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE,∠BAF=∠ADE,再由直角三角形的两个锐角互余和有两个角互余的三角形是直角三角形可证得AF⊥DE.
    (2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.
    【详解】
    解:(1)AF=DE, AF⊥DE.
    ∵ABCD是正方形,
    ∴AB=AD,∠DAB=∠ABC=90°,
    ∵AE=BF,
    ∴△DAE≌△ABF,
    ∴AF=DE,∠BAF=∠ADE.
    ∵∠DAB=90°,
    ∴∠BAF+∠DAF=90°,
    ∴∠ADE+∠DAF=90°,
    ∴AF⊥DE.
    ∴AF=DE,AF⊥DE.
    (2)四边形HIJK是正方形.
    如下图,H、I、J、K分别是AE、EF、FD、DA的中点,
    ∴HI=KJ=AF,HK=IJ=ED,
    ∵AF=DE,
    ∴HI=KJ=HK=IJ,
    ∴四边形HIJK是菱形,
    ∵△DAE≌△ABF,
    ∴∠ADE=∠BAF,
    ∵∠ADE+∠AED=90°,
    ∴∠BAF+∠AED=90°,
    ∴∠AOE=90°
    ∴∠KHI=90°,
    ∴四边形HIJK是正方形.
    此题主要考查正方形的判定的方法与性质和菱形的判定,及全等三角形的判定等知识点的综合运用.
    16、(1)见解析;(2)见解析;(3)8,4.
    【解析】
    (1)根据矩形的性质画图即可;
    (2)根据菱形的性质画图即可;
    (3)根据矩形的面积公式和菱形的周长公式即可得到结论.
    【详解】
    解:(1)如图①所示,矩形ACBD即为所求;
    (2)如图②所示,菱形AFBE即为所求;
    (3)矩形ACBD的面积=2×4=8;菱形AFBE的周长=4×=4,
    故答案为:8,4.
    本题考查了作图-应用与设计作图.熟记矩形和菱形的性质以及正方形的性质是解题的关键所在.
    17、从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往的D乡60吨,此时总运费最少,总运费最小值是10040元.
    【解析】
    设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和吨,然后根据总运费和运输量的关系列出方程式,最后根据x的取值范围求出y的最小值.
    【详解】
    解:设总运费为元,城运往乡的肥料量为吨,则运往乡的肥料量为吨;城运往、乡的肥料量分别为吨和吨.
    由总运费与各运输量的关系可知,反映与之间的函数关系为
    .
    化简得
    ,随的增大而增大,
    ∴当时,的最小值.
    因此,从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元.
    故答案为:从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往的D乡60吨,此时总运费最少,总运费最小值是10040元.
    本题考查一次函数的应用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.
    18、(1)见解析(2)P1(--1,0),P2(0,0)P3(+1,0)
    【解析】
    (1)根据等边三角形的性质即可证明;(2)分三种情况讨论:①若点P在x轴负半轴上,②若点P在x轴上,③若点P在x轴正半轴上,分别进行求解即可.
    【详解】
    (1)证明:∵△ABC是等边三角形
    ∴∠ABC=∠ACB=60°
    ∵BD是中线
    ∴∠DBC=30°
    ∵CP=CD
    ∴∠CPD=∠CDP
    又∵∠ACB=60°
    ∴∠CPD=30°
    ∴∠CPD=∠DBC
    ∴DB=DP即△DBP是等腰三角形.
    (2) 解:在x轴上存在除点P以外的点Q,使△BDQ是等腰三角形
    ①若点P在x轴负半轴上,且BP=BD
    ∵BD=∴BP=
    ∴OP=+1
    ∴点P1(--1,0)
    ②若点P在x轴上,且BP=PD
    ∵∠PBD=∠PDB=30°
    ∴∠DPC=60°又∠PCD=60°
    ∴PC=DC=1
    而OC=1
    ∴OP=0
    ∴点P2(0,0)
    ③若点P在x轴正半轴上,且BP=BD
    ∴BP=而OB=1
    ∴OP=+1
    ∴点P3(+1,0)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.
    【详解】
    解:∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,
    ∴∠ADC=90°,点E为AC中点,
    ∴DE=AC=1,
    故答案为:1.
    本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
    20、
    【解析】
    过C作CM⊥x轴于点M,由平行四边形DCOE的面积可求得OE,过D作DN⊥x轴于点N,由C点坐标则可求得ON的长,从而可求得D点坐标,代入反比例函数解析式可求得k的值
    【详解】
    如图,过C作CM⊥x轴于点M,过D作DN⊥x轴于点N,则四边形CMND为矩形,
    ∵四边形OABC为平行四边形,
    ∴CD∥OE,且DE∥OC,
    ∴四边形DCOE为平行四边形,
    ∵C(2,5),
    ∴OM=2,CM=5,
    由图可得,S△AOC=S△ABC=S▱ABCO,
    又∵S△FCP=S△DCP且S△AEP=S△AGP,
    ∴S▱OEPF=S▱BGPD,
    ∵四边形BCFG的面积为10,
    ∴S▱CDEO=S▱BCFG=10,
    ∴S四边形DCOE=OE•CM=10,即5OE=10,解得OE=2,
    ∴CD=MN=2,
    ∴ON=OM+MN=2+2=4,DN=CM=5,
    ∴D(4,5),
    ∵反比例函数y=图象过点D,
    ∴k=4×5=20.
    故答案为:20.
    本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.
    21、
    【解析】
    根据题意可知,图象经过一三象限或一三四象限,可得b=1或b<1.
    【详解】
    解:一次函数y=2x+b的图象不经过第二象限,
    则可能是经过一三象限或一三四象限,
    经过一三象限时,b=1;
    经过一三四象限时,b<1.
    故b≤1.
    故答案是:≤.
    此题主要考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
    22、h=0.62n
    【解析】
    依据这些书摞在一起总厚度()与书的本数成正比,即可得到函数解析式.
    【详解】
    每本书的厚度为,
    这些书摞在一起总厚度()与书的本数的函数解析式为.
    故答案为:.
    本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.
    23、.
    【解析】
    首先提取公因式,进而利用完全平方公式分解因式即可.
    【详解】
    .
    故答案为:.
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)AB的长是2;(2)①见解析;②点N坐标为(1,4);(3)线段CP长的取值范围为≤CP≤1.
    【解析】
    (1)根据平面直角坐标系中任意两点的距离公式计算即可;
    (2)①根据平面直角坐标系中任意两点的距离公式计算出OA,从而得出OA=AB,然后根据等边对等角可得∠AOB=∠ABO,根据旋转的性质可得BM=BO,BN=BA,∠MBN=∠ABO=∠AOB,然后证出AO∥BN且AO=BN即可证出结论;
    ②证出AN∥x轴,再结合平行四边形的边长和点A的坐标即可得出结论;
    (3)连接BP,根据题意,先根据三角形的三边关系可得当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长,然后求出BP的最小值和最大值即可求出CP的最值,从而得出结论.
    【详解】
    (1)∵点A(3,4),点B(6,0)
    ∴AB==2
    ∴AB的长是2.
    (2)①证明:∵OA==2
    ∴OA=AB
    ∴∠AOB=∠ABO
    ∵△ABO绕点B顺时针旋转得△NBM
    ∴BM=BO,BN=BA,∠MBN=∠ABO=∠AOB
    ∴∠OMB=∠AOB,OA=BN
    ∴∠OMB=∠MBN
    ∴AO∥BN且AO=BN
    ∴四边形AOBN是平行四边形
    ②如图1,连接AN
    ∵四边形AOBN是平行四边形
    ∴AN∥OB即AN∥x轴,AN=OB=6
    ∴xN=xA+6=3+6=1,yN=yA=4
    ∴点N坐标为(1,4)
    (3)连接BP
    ∵点D为线段OA上的动点,OA的对应边为MN
    ∴点P为线段MN上的动点
    ∴点P的运动轨迹是以B为圆心,BP长为半径的圆
    ∵C在OB上,且CB=OB=3
    ∴当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长
    如图2,当BP⊥MN时,BP最短
    ∵S△NBM=S△ABO,MN=OA=2
    ∴MN•BP=OB•yA
    ∴BP=
    ∴CP最小值=-3=
    当点P与M重合时,BP最大,BP=BM=OB=6
    ∴CP最大值=6+3=1
    ∴线段CP长的取值范围为≤CP≤1.
    此题考查的是求平面直角坐标系中任意两点的距离、平行四边形的判定及性质、旋转的性质和线段的最值问题,掌握平面直角坐标系中任意两点的距离公式、平行四边形的判定及性质、旋转的性质和三角形的三边关系是解决此题的关键.
    25、(1)2;;(2)AD=3;(3)①证明见解析;②的值为为或.
    【解析】
    (1)过点作于点,过点作于点,通过解直角三角形可求出,的长;
    (2)根据半对角四边形的定义可得出,进而可得出,由等角对等边可得出,结合即可求出的长;
    (3)①由平行四边形的性质可得出,,进而可得出,根据等腰三角形的性质及三角形外角的性质可得出,再结合半对角四边形的定义即可证出四边形是半对角四边形;
    ②由平行四边形的性质结合,可得出点,,的坐标,分点,落在反比例函数图象上及点,落在反比例函数图象上两种情况考虑:利用平移的性质及反比例函数图象上点的坐标特征可得出关于的一元一次方程,解之即可得出值,再利用反比例函数图象上点的坐标特征可求出值;同可求出值.综上,此题得解.
    【详解】
    解:(1)如图1,过点作于点,过点作于点.

    ,.
    在中,;
    在中,.
    故答案为:2;.
    (2)如图2,
    四边形为半对角四边形,




    (3)如图3,
    ①证明四边形为平行四边形,
    ,,


    又,
    四边形是半对角四边形;
    ②由题意,可知:点的坐标为,,点的坐标为,,点的坐标为.
    当点,向右平移个单位后落在反比例函数的图象上时,,
    解得:,

    当点,向右平移个单位后落在反比例函数的图象上时,

    解得:,

    综上所述:的值为为或.
    本题考查了解直角三角形、等腰三角形的性质、三角形外角的性质、平行四边形的性质、反比例函数图象上点的坐标特征以及解一元一次方程,解题的关键是:(1)通过解直角三角形求出,的长;(2)利用半对角四边形的定义及矩形的性质,求出;(3)①利用等腰三角形的性质、三角形外角的性质以及平行四边形的性质,找出;②分点,落在反比例函数图象上和点,落在反比例函数图象上两种情况,求出的值.
    26、(1)见解析;(2)众数:5,中位数:5;(3)该区体育中考选报引体向上的男生能获得满分的同学有810名.
    【解析】
    (1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数确定a的值,再补全条形图即可;
    (2)根据众数与中位数的定义求解即可;
    (3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.
    【详解】
    解:(1) 设引体向上6个的学生有x人,由题意得 ,解得x=50.
    条形统计图补充如下:
    (2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;
    共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5;
    (3)(名)
    答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.
    本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.
    题号





    总分
    得分
    批阅人
    周阅读用时数(小时)
    4
    5
    8
    12
    学生人数(人)
    3
    4
    2
    1

    相关试卷

    2023-2024学年江苏省汇文实中学九年级数学第一学期期末统考试题含答案:

    这是一份2023-2024学年江苏省汇文实中学九年级数学第一学期期末统考试题含答案,共7页。试卷主要包含了一元二次方程的根的情况是,方程的解是等内容,欢迎下载使用。

    2023-2024学年江苏省汇文实中学九年级数学第一学期期末复习检测试题含答案:

    这是一份2023-2024学年江苏省汇文实中学九年级数学第一学期期末复习检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    江苏省启东汇龙中学2023-2024学年数学九年级第一学期期末预测试题含答案:

    这是一份江苏省启东汇龙中学2023-2024学年数学九年级第一学期期末预测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,由二次函数可知,已知关于x的方程等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map