所属成套资源:北师大版2024-2025学年八年级数学上册精品专题特训(原卷版+解析)
- 北师大版2024-2025学年八年级数学上册专题7.2平行线的性质【十大题型】专题特训(原卷版+解析) 试卷 0 次下载
- 北师大版2024-2025学年八年级数学上册专题7.5与三角形有关的角的四大类型解答专题特训(原卷版+解析) 试卷 0 次下载
- 北师大版2024-2025学年八年级数学上册专题7.9平行线的证明章末拔尖卷专题特训(原卷版+解析) 试卷 0 次下载
- 北师大版2024-2025学年八年级数学上册专题7.10平行线的证明章末九大题型总结(培优篇)专题特训(原卷版+解析) 试卷 0 次下载
- 北师大版2024-2025学年八年级数学上册专题7.11平行线的证明章末十一大题型总结(拔尖篇)专题特训(原卷版+解析) 试卷 0 次下载
北师大版2024-2025学年八年级数学上册专题7.7平行线中的四大经典模型专题特训(原卷版+解析)
展开
这是一份北师大版2024-2025学年八年级数学上册专题7.7平行线中的四大经典模型专题特训(原卷版+解析),共84页。
专题7.7 平行线中的四大经典模型【北师大版】【模型1 “猪蹄”型(含锯齿型)】1.(2023下·湖北武汉·八年级统考期末)如图,AB∥CD,EF平分∠BED,∠DEF+∠D=66°,∠B−∠D=28°,则∠BED= .2.(2023上·辽宁鞍山·八年级统考期中)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,∠BCD=n°,则∠BED的度数为 .(用含n的式子表示)3.(2023下·广东河源·八年级河源市第二中学校考期中)已知直线l1∥l2, A是l1上的一点,B是l2上的一点,直线l3和直线l1,l2交于C和D,直线CD上有一点P.(1)如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C,D两点的外侧运动时(P点与C,D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)4.(2023下·山东聊城·八年级统考阶段练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.5.(2023下·福建莆田·八年级莆田第二十五中学校考阶段练习)如图,AB//CD,点E在直线AB,CD内部,且AE⊥CE.(1)如图1,连接AC,若AE平分∠BAC,求证:CE平分∠ACD;(2)如图2,点M在线段AE上,①若∠MCE=∠ECD,当直角顶点E移动时,∠BAE与∠MCD是否存在确定的数量关系?并说明理由;②若∠MCE=1n∠ECD(n为正整数),当直角顶点E移动时,∠BAE与∠MCD是否存在确定的数量关系?并说明理由.6.(2023·全国·八年级专题练习)(1)如图1,已知AB//CD,∠ABF=∠DCE,求证:∠BFE=∠FEC(2)如图2,已知AB//CD,∠EAF=14∠EAB,∠ECF=14∠ECD,求证:∠AFC=34∠AEC7.(2023下·湖北武汉·八年级统考期中)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F= ;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.8.(2023下·浙江绍兴·八年级统考期末)问题情境:如图1,已知AB∥CD,∠APC=108°.求∠PAB+∠PCD的度数. 经过思考,小敏的思路是:如图2,过P作PE∥AB,根据平行线有关性质,可得∠PAB+∠PCD=360°−∠APC=252°.问题迁移:如图3,AD∥BC,点P在射线OM上运动, ∠ADP=∠α,∠BCP=∠β.(1)当点P在A、B两点之间运动时, ∠CPD、∠α、∠β之间有何数量关系?请说明理由.(2)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系.(3)问题拓展:如图4,MA1∥NAn,A1−B1−A2−⋯−Bn−1−An是一条折线段,依据此图所含信息,把你所发现的结论,用简洁的数学式子表达为 .9.(2023下·重庆九龙坡·八年级统考期末)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.10.(2023下·辽宁大连·八年级统考期中)如图,AB//CD,点O在直线CD上,点P在直线AB和CD之间,∠ABP=∠PDQ=α,PD平分∠BPQ.(1)求∠BPD的度数(用含α的式子表示);(2)过点D作DE//PQ交PB的延长线于点E,作∠DEP的平分线EF交PD于点F,请在备用图中补全图形,猜想EF与PD的位置关系,并证明;(3)将(2)中的“作∠DEP的平分线EF交PD于点F”改为“作射线EF将∠DEP分为1:3两个部分,交PD于点F”,其余条件不变,连接EQ,若EQ恰好平分∠PQD,请直接写出∠FEQ=__________(用含α的式子表示).【模型2 “铅笔”型】、1.(2012下·广东茂名·八年级统考期中)如图,AB∥ED,∠B+∠C+∠D=( ) A.180° B.360° C.540° D.270°2.(2012·江苏常州·八年级统考期中)一大门的栏杆如图所示,BA垂直地面AE于点A,CD平行于地面AE,则∠ABC+∠BCD= .3.(2023下·陕西西安·八年级西安市第八十三中学校联考期中)如图1所示的是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2所示的是手动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠DEF=130°,则∠AGC的度数是 .4.(2023下·广东东莞·八年级东莞市长安实验中学校考期中)如图,已知AB∥CD.(1)如图1所示,∠1+∠2= ;(2)如图2所示,∠1+∠2+∠3= ;并写出求解过程.(3)如图3所示,∠1+∠2+∠3+∠4= ;(4)如图4所示,试探究∠1+∠2+∠3+∠4+⋯+∠n= .5.(2023下·江苏淮安·八年级统考期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.思路点拨:小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE的度数,从而可求出∠APC的度数;小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC的度数;小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC的度数为 °;问题迁移:(1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.6.(2023下·内蒙古·八年级校考期中)综合与探究:(1)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠PAB=180°.∴∠APE=180°−∠PAB=180°−130°=50°.∵AB∥CD.∴PE∥CD.…………请你帮助小明完成剩余的解答.(2)问题探究:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.当点P在A,B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.7.(2023下·天津滨海新·八年级统考期末)如图1,四边形MNBD为一张长方形纸片. (1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD=__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出n+1个角,那么这n+1个角的和是____________°.8.(2023下·浙江·八年级期末)已知AB//CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P.(1)如图1所示时,试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问∠AEP,∠EPF,∠PFC还可能满足怎样的数量关系?请画图并证明(3)当∠EPF满足0°