- 第52讲 平行线的性质(基础)学案 学案 3 次下载
- 第53讲 平行线的性质(提高)学案 学案 4 次下载
- 第54讲 三角形的内角和定理(基础)学案 学案 4 次下载
- 第55讲 三角形的内角和定理(提高)学案 学案 4 次下载
- 第57讲《平行线的证明》(提高)学案 学案 4 次下载
初中数学北师大版八年级上册第七章 平行线的证明综合与测试课后复习题
展开《平行线的证明》全章复习与巩固(基础)知识讲解
【学习目标】
1. 了解定义及命题的概念与构成,并能通过证明或举反例判定命题的真假;
2. 区别平行线的判定与性质,并能灵活运用;
3. 理解并能灵活运用三角形的内角和定理及其推论.
【知识网络】
【要点梳理】
要点一、定义、命题及证明
1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.
2.命题:判断一件事情的句子,叫做命题.
要点诠释:
(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.
(2)正确的命题称为真命题,不正确的命题称为假命题.
(3)公认的真命题叫做公理.
(4) 经过证明的真命题称为定理.
3.证明: 在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.
要点诠释:
(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.
(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.
(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.
要点二、平行线的判定与性质
1.平行线的判定
判定方法1:同位角相等,两直线平行.
判定方法2:内错角相等,两直线平行.
判定方法3:同旁内角互补,两直线平行.
要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:
(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.
(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).
(3)在同一平面内,垂直于同一直线的两条直线平行.
(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
2.平行线的性质
性质1:两直线平行,同位角相等;
性质2:两直线平行,内错角相等;
性质3:两直线平行,同旁内角互补.
要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:
(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.
(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.
要点三、三角形的内角和定理及推论
三角形的内角和定理:三角形的内角和等于180°.
推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.
(2)三角形的一个外角大于任何一个和它不相邻的内角.
要点诠释:
(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.
(2)推论可以当做定理使用.
【典型例题】
类型一、定义、命题及证明
1.指出下列命题的条件和结论,并判断命题的真假,如果是假命题,请举出反例.
如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.
【答案与解析】
解:条件:等腰三角形的两条边长为5和7
结论:等腰三角形的周长为17
是假命题;反例:当腰长为7,底边长为5时,周长为19
【总结升华】本题考查了命题与定理的相关知识.关键是明确命题与定理的组成部分,会判断命题的题设与结论.
举一反三:
【变式1】某工程队,在修建兰定高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程( ).
A.直线的公理 B.直线的公理或线段最短公理 C.线段最短公理 D.平行公理
【答案】B
【变式2】下列命题真命题是( ) .
A.互补的两个角不相等 B.相等的两个角是对顶角
C.有公共顶点的两个角是对顶角 D.同角或等角的补角相等
【答案】D
2.叙述并证明三角形内角和定理.
要求写出定理、已知、求证,画出图形,并写出证明过程.
【思路点拨】欲证明三角形的三个内角的和为180°,可以把三角形三个角转移到一个平角上,利用平角的性质解答.
【答案与解析】
定理:三角形的内角和是180°;
已知:△ABC的三个内角分别为∠A,∠B,∠C;
求证:∠A+∠B+∠C=180°.
证明:如下图,过点A作直线MN,使MN∥BC.
∵MN∥BC,
∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等).
∵∠MAB+∠NAC+∠BAC=180°(平角定义),
∴∠B+∠C+∠BAC=180°(等量代换).
即∠A+∠B+∠C=180°.
【总结升华】本题考查的是三角形内角和定理,即三角形的内角和是180°.
类型二、平行线的判定与性质
3.(佳木斯中考)如图所示,请你填写一个适当的条件:________,使AD∥BC.
【思路点拨】欲证AD∥BC,结合图形,故可按同位角相等、内错角相等和同旁内角互补两直线平行来补充条件.
【答案】∠FAD=∠FBC,或∠ADB=∠CBD,或∠ABC+∠BAD=180°.
【解析】
解:本题答案不唯一,如:利用“同位角相等,两直线平行”,可添加条件∠FAD=∠FBC;利用“内错角相等,两直线平行”,可添加条件∠ADB=∠CBD;利用“同旁内角互补,两直线平行”,可添加条件∠ABC+∠BAD=180°.
【总结升华】这是一道开放性试题,分清题设和结论:结论: AD∥BC,题设可根据平行线的判定方法,逐一寻找即可.
举一反三:
【变式】(2020春•召陵区期末)如图所示,已知∠1=52°,∠2=52°,∠3=91°,那么∠4= .
【答案】解:如图,∵∠1=∠2=52°,
∴a∥b,
∴∠3=∠5=91°,
∵∠5+∠4=180°,
∴∠4=180°﹣∠5=89°.
4. (2020春•雅安校级期中)已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.
【思路点拨】由于EF⊥AC,DB⊥AC得到EF∥DM,根据平行线的性质得∠2=∠CDM,而∠1=∠2,则∠1=∠CDM,根据平行线的判定得到MN∥CD,所以∠C=∠AMN,又∠3=∠C,于是∠3=∠AMN,然后根据平行线的判定即可得到AB∥MN.
【答案与解析】
证明:∵EF⊥AC,DB⊥AC,
∴EF∥DM,
∴∠2=∠CDM,
∵∠1=∠2,
∴∠1=∠CDM,
∴MN∥CD,
∴∠C=∠AMN,
∵∠3=∠C,
∴∠3=∠AMN,
∴AB∥MN.
【总结升华】本题反复应用了平行线的判定与性质,只有对判定和性质熟练掌握才能做到运用自如.
举一反三:
【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.
【答案】∠AED=∠ACB,理由如下:
∵∠1+∠2=180°,又∠1+∠4=180°,
∴∠2=∠4.
∴AB∥EF(内错角相等,两直线平行).
∴∠5=∠3.
又∠3=∠B,
∴∠5=∠B.
∴DE∥BC(同位角相等,两直线平行).
∴∠AED=∠ACB(两直线平行,同位角相等).
类型三、三角形的内角和定理及推论
5.请你利用“三角形内角和定理”证明“四边形的内角和等于360°”.四边形ABCD如图所示.
【思路点拨】将四边形转化为三角形去解决.
【答案与解析】
证明:如下图,连接AC ∵∠B+∠BAC+∠ACB=180°,
∠D+∠DAC+∠ACD=180°,
∴(∠B+∠BAC+∠ACB)+(∠D+∠DAC+∠ACD)=180°+180°.
∴∠B+∠D+(∠BAC+∠DAC)+(∠ACB+∠ACD)=360°.
∴∠B+∠C+∠BAD+∠BCD=360°.
即四边形ABCD的内角和等于360°.
【总结升华】把不熟悉的多边形分成熟悉的三角形,利用三角形的内角和推导多边形的内角和是解题的关键,同理可以得到n边形的内角和公式为:(n-2)×180°.
6.(2020春•宁城)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数: 个;
(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.
(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).
【答案与解析】解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,
∴∠A+∠D=∠C+∠B;
(2)①线段AB、CD相交于点O,形成“8字形”;
②线段AN、CM相交于点O,形成“8字形”;
③线段AB、CP相交于点N,形成“8字形”;
④线段AB、CM相交于点O,形成“8字形”;
⑤线段AP、CD相交于点M,形成“8字形”;
⑥线段AN、CD相交于点O,形成“8字形”;
故“8字形”共有6个;
(3)∠DAP+∠D=∠P+∠DCP,①
∠PCB+∠B=∠PAB+∠P,②
∵∠DAB和∠BCD的平分线AP和CP相交于点P,
∴∠DAP=∠PAB,∠DCP=∠PCB,
①+②得:
∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,
即2∠P=∠D+∠B,
又∵∠D=50度,∠B=40度,
∴2∠P=50°+40°,
∴∠P=45°;
(4)关系:2∠P=∠D+∠B.
由∠D+∠1+∠2=∠B+∠3+∠4①
由∠ONC=∠B+∠4=∠P+∠2,②
①+②得:
∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1,
∠D+2∠B=2∠P+∠B,
即2∠P=∠D+∠B.
【总结升华】本题主要考查了三角形内角和定理,角平分线的定义及阅读理解与知识的迁移能力.
举一反三:
【变式】在△ABC中,∠A=50°,∠B=70°,则∠C的外角等于________.
【答案】120°
初中数学北师大版九年级下册1 圆学案及答案: 这是一份初中数学北师大版九年级下册1 圆学案及答案,文件包含正多边形和圆知识讲解基础doc、正多边形和圆巩固练习基础doc等2份学案配套教学资源,其中学案共11页, 欢迎下载使用。
2020-2021学年第七章 平行线的证明综合与测试当堂达标检测题: 这是一份2020-2021学年第七章 平行线的证明综合与测试当堂达标检测题,文件包含《平行线的证明》全章复习与巩固提高巩固练习doc、《平行线的证明》全章复习与巩固提高知识讲解doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
八年级下册4 分式方程学案: 这是一份八年级下册4 分式方程学案,文件包含可化为一元一次方程的分式方程巩固练习基础doc、可化为一元一次方程的分式方程知识讲解基础doc等2份学案配套教学资源,其中学案共8页, 欢迎下载使用。