


湖南长沙青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开
这是一份湖南长沙青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,可以由其中一个图形通过平移得到的是( )
A.B.C.D.
2、(4分)若关于x的分式方程无解,则m的值为( )
A.一l.5B.1C.一l.5或2D.一0.5或一l.5
3、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到AB的距离为( )
A.4cmB.3cmC.2cmD.1cm
4、(4分)已知反比例函数y=,下列结论中,不正确的是( ).
A.图象必经过点(1,m).B.y随x的增大而减少.
C.当m>0时,图象在第一、三象限内.D.若y=2m,则x=.
5、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为( )
A.3B.4C.6D.5
6、(4分)顺次连结一个平行四边形的各边中点所得四边形的形状是( )
A.平行四边形B.矩形C.菱形D.正方形
7、(4分)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.B.C.D.
8、(4分)一个图形,无论是经过平移变换,还是经过旋转变换,下列说法都能正确的是( )
①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等
A.①②③B.①③④C.①②④D.②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分))如图,Rt△ABC中,C= 90,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 .
10、(4分)点A(a,b)是一次函数y=x+2与反比例函数的图像的交点,则__________。
11、(4分)在中,若∠A=38°,则∠C=____________
12、(4分)将函数的图象向上平移2个单位,所得的函数图象的解析为________.
13、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.
三、解答题(本大题共5个小题,共48分)
14、(12分)(知识背景)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
勾为3时,股,弦;
勾为5时,股,弦;
请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24= 弦25=
(2)如果勾用(,且为奇数)表示时,请用含有的式子表示股和弦,则股= ,弦= .
(解决问题)
观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:
(3)如果是符合同样规律的一组勾股数,(表示大于1的整数),则 , ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.
(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、1.
15、(8分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC和CD于点P,Q.
(1)求证:△ABP∽△DQR;
(2)求的值.
16、(8分)在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.
(1)求直线BC的解析式.
(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.
(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
17、(10分)闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
18、(10分)如图,在□ ABCD中,点E、F在对角线BD上,且BE=DF,
(1)求证:AE=CF;
(2)求证:四边形AECF是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)请写出一个图形经过一、三象限的正比例函数的解析式 .
20、(4分)一组数据从小到大排列:0、3、、5,中位数是4,则________.
21、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.
22、(4分)一次函数y=kx+b(k≠0,k,b为常数)的图象如图所示,则关于x的不等式kx+b<0的解集为______.
23、(4分)阅读下面材料:
在数学课上,老师提出如下问题:
已知:如图,及边的中点.
求作:平行四边形.
①连接并延长,在延长线上截取;
②连接、.
所以四边形就是所求作的平行四边形.
老师说:“小敏的作法正确.
请回答:小敏的作法正确的理由是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON;
(2)若正方形ABCD的边长为6,OE=EM,求MN的长.
25、(10分)如图,在平行四边形中,是边上的中点,连接,并延长交的延长线于点.证明:.
26、(12分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平移的定义直接判断即可.
【详解】
解:由其中一个图形平移得到整个图形的是B,
故选:B.
此题主要考查了图形的平移,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.
2、D
【解析】
方程两边都乘以x(x-1)得:(2m+x)x-x(x-1)=2(x-1),即(2m+1)x=-6,①
①∵当2m+1=0时,此方程无解,∴此时m=-0.2,
②∵关于x的分式方程无解,∴x=0或x-1=0,即x=0,x=1.
当x=0时,代入①得:(2m+1)×0=-6,此方程无解;
当x=1时,代入①得:(2m+1)×1=-6,解得:m=-1.2.
∴若关于x的分式方程无解,m的值是-0.2或-1.2.故选D.
3、C
【解析】
作DE⊥AB于E,根据题意求出CD,根据角平分线的性质求出DE.
【详解】
解:作DE⊥AB于E,
∵BD=2CD,BC=6,
∴CD=2,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=CD=2,
即点D到AB的距离为2cm,
故选:C.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
4、B
【解析】
根据反比例函数的性质对各项进行判断即可.
【详解】
A. 图象必经过点(1,m),正确;
B. 当时,在每一个象限内y随x的增大而减少,错误;
C. 当m>0时,图象在第一、三象限内,正确;
D. 若y=2m,则x=,正确;
故答案为:B.
本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.
5、C
【解析】
根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有,从而求出.
【详解】
解:∵D、E分别是AB、AC的中点.
∴DE是△ABC的中位线,
∴BC=2DE,
∵DE=3,
∴BC=2×3=1.
故选:C.
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
6、A
【解析】
试题分析:连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.
解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,
理由如下:
(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,
∴EH=FG,EH∥FG,
∴四边形EFGH是平行四边形.
故选A.
考点:中点四边形.
7、C
【解析】
根据函数的性质判断系数k>1,然后依次把每个点的坐标代入函数解析式,求出k的值,由此得到结论.
【详解】
∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>1.
A.把点(﹣5,3)代入y=kx﹣1得到:k1,不符合题意;
B.把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<1,不符合题意;
C.把点(2,2)代入y=kx﹣1得到:k1,符合题意;
D.把点(5,﹣1)代入y=kx﹣1得到:k=1,不符合题意.
故选C.
本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>1是解题的关键.
8、D
【解析】
根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.
【详解】
解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;
②无论平移还是旋转,对应线段相等,故本小题正确;
@无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;
④无论平移还是旋转,对应角相等,故本小题正确.
综上所述,说法正确的②③④.故选D.
本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.
【解析】
正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.
【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.
∴∠AOM+∠BOF=90°.
又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.
在△AOM和△BOF中,
∵∠AMO=∠OFB=90°,∠OAM=∠BOF, OA=OB,
∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.
又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.
∴OF=CF.∴△OCF为等腰直角三角形.
∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.
∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.
10、-8
【解析】
把点A(a,b)分别代入一次函数y=x-1与反比例函数 ,求出a-b与ab的值,代入代数式进行计算即可.
【详解】
∵点A(a,b)是一次函数y=x+2与反比例函数的交点,
∴b=a+2,,即a−b=-2,ab=4,
∴原式=ab(a−b)=4×(-2)=-8.
反比例函数与一次函数的交点问题,对于本题我们可以先分别把点代入两个函数中,在对函数和所求的代数式进行适当变形,然后整体代入即可.
11、38°
【解析】
根据平行四边形对角相等即可求解.
【详解】
解:∵平行四边形ABCD中,∠A=38°,
∴∠C=∠A=38°,
故答案为:38°.
本题考查了平行四边形的性质,要知道平行四边形对角相等.
12、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
13、87.1.
【解析】
根据加权平均数的含义和求法,可求出甲的平均成绩.
【详解】
面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,
甲的平均成绩为:(分).
故答案为:87.1.
考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);;(2);;(3);;(4)10;26; 12;2;
【解析】
(1)依据规律可得,如果勾为7,则股24=,
弦25=;
(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,
弦=;
(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;
(4)依据柏拉图公式,若m2-1=24,则m=5,2m=10,m2+1=26;若m2+1=1,则m=6,2m=12,m2-1=2.
【详解】
解:(1)依据规律可得,如果勾为7,则股24=,
弦25=;
故答案为:;;
(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,
弦=;
故答案为:;;
(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;
故答案为:m2-1,m2+1;
(4)依据柏拉图公式,
若m2-1=24,则m=5,2m=10,m2+1=26;
若m2+1=1,则m=6,2m=12,m2-1=2;
故答案为:10、26;12、2.
此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
15、(1)见解析;(2).
【解析】
(1)根据平行线的性质可证明两三角形相似;
(2)根据平行四边形的性质及三角形中位线定理得:BP=PR,则CP=RE,证明△CPQ∽△DRQ,可得,由(1)中的相似列比例式可得结论.
【详解】
(1)∵四边形ABCD和四边形ACED都是平行四边形,
∴AB∥CD,AC∥DE,
∴∠BAC=∠ACD,∠ACD=∠CDE,
∴∠BAC=∠QDR,
∵AB∥CD,
∴∠ABP=∠DQR,
∴△ABP∽△DQR;
(2)∵四边形ABCD和四边形ACED都是平行四边形,
∴AD=BC,AD=CE,
∴BC=CE,
∵CP∥RE,
∴BP=PR,
∴CP=RE,∵点R为DE的中点,
∴DR=RE,
∴,
∵CP∥DR,
∴△CPQ∽△DRQ,
∴,
∴,
由(1)得:△ABP∽△DQR,
∴.
此题考查了相似三角形的判定与性质以及平行四边形的性质.此题有难度,注意掌握数形结合思想的应用.
16、(1)y=x+2;(2),t=秒或t=+4秒时,△DSN≌△BOC;(3)M(+4)或M()或M().
【解析】
(1)求出B,C的坐标,由待定系数法可求出答案;
(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.分两种情况:(Ⅰ)当点M在线段AB上运动时,(Ⅱ)当点M在线段AB的延长线上运动时,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;
(3)设点M(a,﹣a+2),N(b,),P(2,c),点B(0,2),分三种情况:(Ⅰ)当以BM,BP为邻边构成菱形时,(Ⅱ)当以BP为对角线,BM为边构成菱形时,(Ⅲ)当以BM为对角线,BP为边构成菱形时,由菱形的性质可得出方程组,解方程组即可得出答案.
【详解】
解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴OB=AO=2,
在Rt△COB中,∠BOC=90°,∠BCA=30°,
∴OC=2,
∴C(﹣2, 0),
设直线BC的解析式为y=kx+b,代入B,C两点的坐标得,
,
∴k=,b=2,
∴直线BC的解析式为y=x+2;
(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.
(Ⅰ)如图1,当点M在线段AB上运动时,
∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,
∴∠BAO=∠ABO=45°,
∵∠BCO=30°,
∴NP=MQ=t,
∵MQ⊥x轴,NP⊥x轴,
∴∠NPQ=∠MQA=90°,NP∥MQ,
∴四边形NPQM是矩形,
∴NS∥x轴,
∵AD⊥x轴,
∴AS∥MQ∥y轴,
∴四边形MQAS是矩形,
∴AS=MQ=NP=t,
∵NS∥x轴,AS∥MQ∥y轴,
∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,
∴当DS=BO=2时,
△DSN≌△BOC(AAS),
∵D(2, +2),
∴DS=+2﹣t,
∴+2﹣t=2,
∴t=(秒);
(Ⅱ)当点M在线段AB的延长线上运动时,如图2,
同理可得,当DS=BO=2时,△DSN≌△BOC(AAS),
∵DS=t﹣(+2),
∴t﹣(+2)=2,
∴t=+4(秒),
综合以上可得,t=秒或t=+4秒时,△DSN≌△BOC.
(3)存在以M、B、N、P为顶点的四边形是菱形:
M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).
∵M是直线AB在第二象限上的一点,点N,P分别在直线BC,直线AD上,
∴设点M(a,﹣a+2),N(b, b+2),P(2,c),点B(0,2),
(Ⅰ)当以BM,BP为邻边构成菱形时,如图3,
∵∠CBO=60°,∠OBA=∠OAB=∠PAF=45°,
∴∠DBA=∠MBN=∠PBN=75°,
∴∠MBE=45°,∠PBF=30°,
∴MB=ME,PF=AP,PB=2PF=AP,
∵四边形BMNP是菱形,
∴,
解得,a=﹣2﹣2,
∴M(﹣2﹣2,2+4)(此时点N与点C重合),
(Ⅱ)当以BP为对角线,BM为边构成菱形时,如图4,
过点B作EF∥x轴,ME⊥EF,NF⊥EF,
同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,
由四边形BMNP是菱形和BM=BN得:
,
解得:a=﹣2﹣4,
∴M(﹣2﹣4,2+6),
(Ⅲ)当以BM为对角线,BP为边构成菱形时,如图5,
作NE⊥y轴,BF⊥AD,
∴∠BNE=30°,∠PBF=60°,
由四边形BMNP是菱形和BN=BP得,
,
解得:a=﹣2+2,
∴M(﹣2+2,2).
综合上以得出,当以M、B、N、P为顶点的四边形是菱形时,点M的坐标为:
M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).
本题考查了待定系数法求函数解析式,动点问题与全等结合,菱形探究,熟练掌握相关方法是解题的关键.
17、750米.
【解析】
设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,根据题意可得,实际比原计划少用2天完成任务,据此列方程求解.
解:设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,
由题意得,﹣=2,
解得:x=750,
经检验,x=750是原分式方程的解,且符合题意.
答:实际每天修建盲道750米.
“点睛”本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
18、(1)证明见试题解析;(2)证明见试题解析.
【解析】
(1)根据平行四边形的性质可得AB=CD,AB∥CD,然后可证明∠ABE=∠CDF,再利用SAS来判定△ABE≌△DCF,从而得出AE=CF.
(2)首先根据全等三角形的性质可得∠AEB=∠CFD,根据等角的补角相等可得∠AEF=∠CFE,然后证明AE∥CF,从而可得四边形AECF是平行四边形.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠ABE=∠CDF.
在△ABE和△CDF中,
,
∴△ABE≌△DCF(SAS).
∴AE=CF.
(2)∵△ABE≌△DCF,
∴∠AEB=∠CFD,
∴∠AEF=∠CFE,
∴AE∥CF,
∵AE=CF,
∴四边形AECF是平行四边形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=x(答案不唯一)
【解析】
试题分析:设此正比例函数的解析式为y=kx(k≠1),
∵此正比例函数的图象经过一、三象限,∴k>1.
∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).
20、5
【解析】
根据中位数的求法可以列出方程,解得x=5
【详解】
解:∵一共有4个数据
∴中位数应该是排列后第2和第3个数据的平均数
∴可得:
解得:x=5
故答案为5
此题考查中位数,熟练掌握中位数的求法是解题关键
21、
【解析】
连接BD,BF,由正方形性质求出∠DBF=90〫,根据勾股定理求出BD,BF,再求DF,再根据直角三角形斜边上的中线等于斜边一半求BH.
【详解】
连接BD,BF,
∵四边形ABCD和四边形BEFG是正方形,
∴∠DBC=∠GBF =45〫, BD=,BF=,
∴∠DBF=90〫,
∴DF= ,
∵H为线段DF的中点,
∴BH=
故答案为
本题考核知识点:正方形性质,直角三角形. 解题关键点:熟记正方形,直角三角形的性质.
22、x>1
【解析】
从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.
【详解】
解:函数y=kx+b的图象经过点(1,0),并且函数值y随x的增大而减小,
所以当x>1时,函数值小于0,即关于x的不等式kx+b<0的解集是x>1.
故答案为x>1.
此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、对角线互相平分的四边形是平行四边形
【解析】试题解析:∵是边的中点,
∴,
∵,
∴四边形是平行四边形,
则依据:对角线互相平分的四边形是平行四边形.
故答案为:对角线互相平分的四边形是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)MN.
【解析】
(1)证△OAM≌△OBN即可得;
(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=,由勾股定理即可求出MN的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
(2)如图,过点O作OH⊥AD于点H,
∵正方形的边长为6,
∴OH=HA=3,
∵E为OM的中点,
∴HM=6,
则OM=,
∴MN=.
本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.
25、见解析
【解析】
由在平行四边形中,是边上的中点,易证得,从而证得.
【详解】
证明:四边形是平行四边形,
,则AB∥CF,
,
是边上的中点,
,
在和中,
,
,
.
此题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.
26、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.
【解析】
试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).
故答案为10;2.
(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).
(3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.
答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.
点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
