|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】
    立即下载
    加入资料篮
    湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】01
    湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】02
    湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】

    展开
    这是一份湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年九年级数学第一学期开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值( )
    A.3B.1C.-1D.-3
    2、(4分)如图,∠1=∠2,DE∥AC,则图中的相似三角形有( )
    A.2对B.3对C.4对D.5对
    3、(4分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
    A.B.
    C.D.
    4、(4分)如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是( )
    A.x<-2B.x>-2C.x<-4D.x>-4
    5、(4分)矩形ABCD的对角线AC、BD交于点O,下列结论不成立的是( )
    A.AC=BDB.OA=OBC.OC=CDD.∠BCD=90°
    6、(4分)如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为( )
    A.B.
    C.D.
    7、(4分)设直角三角形的两条直角边分别为a和b,斜边长为c,已知,,则( )
    A.3B.4C.5D.8
    8、(4分)下列调查最适合用查阅资料的方法收集数据的是( )
    A.班级推选班长B.本校学生的到时间
    C.2014世界杯中,谁的进球最多D.本班同学最喜爱的明星
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.
    10、(4分))如图,Rt△ABC中,C= 90,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 .
    11、(4分)如图所示,直线y=kx+b经过点(﹣2,0),则关于x的不等式kx+b<0的解集为_____.
    12、(4分)如图,在中,,,是角平分线,是中线,过点作于点,交于点,连接,则线段的长为_____.
    13、(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)实践与探究
    宽与长的比是(约0.618)的矩形叫做黄金矩形。黄金矩形给我们以协调、均匀的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。
    下面我们通过折纸得到黄金矩形。
    第一步,在一张矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平。
    第二步,如图2,把这个正方形折成两个相等的矩形,再把纸片展平,折痕是。
    第三步,折出内侧矩形的对角线,并把折到图3中所示的处,折痕为。
    第四步,展平纸片,按照所得的点折出,使;过点折出折痕,使。
    (1)上述第三步将折到处后,得到一个四边形,请判断四边形的形状,并说明理由。
    (2)上述第四步折出折痕后得到一个四边形,这个四边形是黄金矩形,请你说明理由。(提示:设的长度为2)
    (3)在图4中,再找出一个黄金矩形_______________________________(黄金矩形除外,直接写出答案,不需证明,可能参考数值:)
    (4)请你举一个采用了黄金矩形设计的世界名建筑_________________________.
    15、(8分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.
    (1)求证:四边形ADCE是平行四边形;
    (2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.
    16、(8分)一个三角形的三边长分别为5,,.
    (1)求它的周长(要求结果化简);
    (2)请你给出一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.
    17、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
    (1)求抛物线的解析式;
    (2)猜想△EDB的形状并加以证明.
    18、(10分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
    求证:(1)△BEG≌△DFH;
    (2)四边形GEHF是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
    20、(4分)如果一组数据x1,x2,…,xn的方差是4,则另一组数据x1+3,x2+3,…,xn+3的方差是_____.
    21、(4分)如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP=,则BC的长为_______.
    22、(4分)如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.
    23、(4分)已知,则的值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.
    (1)如图一,当点O在RtΔABC内部时.
    ①按题意补全图形;
    ②猜想DE与BC的数量关系,并证明.
    (2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.

    25、(10分)某租赁公司拥有汽车 100 辆.据统计,每辆车的月租金为 4000 元时,可全部租出.每辆车的月租金每增加 100 元,未租出的车将增加 1 辆.租出的车每辆每月的维护费为 500 元,未租出的车每辆每月只需维护费 100 元.
    (1)当每辆车的月租金为 4600 元时,能租出多少辆?并计算此时租赁公司的月收益(租金收入扣 除维护费)是多少万元?
    (2)规定每辆车月租金不能超过 7200 元,当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到 40.4 万元?
    26、(12分)如图,在中,分别平分和,交于点,线段相交于点M.
    (1)求证:;
    (2)若,则的值是__________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    将自变量x的值代入函数解析式求解即可.
    【详解】
    解:x=-1时,y=-(-1)+2=1+2=1.
    故选:A.
    本题考查函数值的计算:(1)当已知函数解析式时,求函数值就是求代数式的值;
    (2)函数值是唯一的,而对应的自变量可以是多个.
    2、C
    【解析】
    由∠1=∠2,DE∥AC,利用有两角对应相等的三角形相似解答即可.
    【详解】
    ∵DE∥AC,
    ∴△BED∽△BAC,∠EDA=∠DAC,
    ∵∠1=∠2,
    ∴△ADE∽△CAD,
    ∵DE∥AC,
    ∴∠2=∠EDB,
    ∵∠1=∠2,
    ∴∠1=∠EDB,
    ∵∠B=∠B,
    ∴△BDE∽△BAD,
    ∴△ABD∽△CBA,
    故选:C.
    本题考查了相似三角形的判定,注意掌握有两角对应相等的三角形相似定理的应用,注意数形结合思想的应用.
    3、C
    【解析】
    本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.
    【详解】
    最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.
    故本题选C.
    本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.
    4、C
    【解析】
    以交点为分界,结合图象写出不等式kx<ax+b的解集即可.
    【详解】
    函数y=kx和y=ax+b的图象相交于点P(-1,-2).
    由图可知,不等式kx<ax+b的解集为x<-1.
    故选C.
    此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.
    5、C
    【解析】
    根据矩形的性质可以直接判断.
    【详解】
    ∵四边形ABCD是矩形
    ∴AC=BD,OA=OB=OC=OD,∠BCD=90°
    ∴选项A,B,D成立,
    故选C.
    本题考查了矩形的性质,熟练运用矩形的性质是本题的关键.
    6、D
    【解析】
    由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.
    【详解】
    ∵▱ABCD的对角线AC,BD相交于点O,
    ∴OA=OC,AD=BC,AB=CD=5,
    ∵AE=EB,OE=3,
    ∴BC=2OE=6,
    ∴▱ABCD的周长=2×(AB+BC)=1.
    故选:D.
    此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.
    7、B
    【解析】
    根据勾股定理,直接计算即可得解.
    【详解】
    根据勾股定理,得
    故答案为B.
    此题主要考查勾股定理的运用,熟练掌握,即可解题.
    8、C
    【解析】
    了解收集数据的方法及渠道,得出最适合用查阅资料的方法收集数据的选项.
    【详解】
    A、B、D适合用调查的方法收集数据,不符合题意;
    C适合用查阅资料的方法收集数据,符合题意.
    故选C.
    本题考查了调查收集数据的过程与方法.解题关键是掌握收集数据的几种方法:查资料、做实验和做调查.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、或
    【解析】
    沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.
    【详解】
    (1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,
    由折叠得:是正方形,此时:,
    (2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,
    由折叠得:,
    在中,,

    设,则,
    在中,由勾股定理得:,解得:,
    在中,由勾股定理得:,
    折痕长为:或.
    考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.
    10、4.
    【解析】
    正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.
    【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,
    ∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.
    ∴∠AOM+∠BOF=90°.
    又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.
    在△AOM和△BOF中,
    ∵∠AMO=∠OFB=90°,∠OAM=∠BOF, OA=OB,
    ∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.
    又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.
    ∴OF=CF.∴△OCF为等腰直角三角形.
    ∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.
    ∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.
    11、x<﹣1.
    【解析】
    结合函数图象,写出直线在轴下方所对应的自变量的范围即可.
    【详解】
    ∵直线经过点(-1,0),
    ∴当时,,
    ∴关于的不等式的解集为.
    故答案为:.
    本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.
    12、1
    【解析】
    首先根据全等三角形判定的方法,判断出△AFG≌△AFC,即可判断出FG=FC,AG=AC,所以点F是CG的中点;然后根据点E是BC的中点,可得EF是△CBG的中位线,再根据三角形中位线定理,求出线段EF的长为多少即可.
    【详解】
    ∵AD是∠BAC的平分线,
    ∴∠FAG=∠FAC,
    ∵CG⊥AD,
    ∴∠AFG=∠AFC=90°,
    在△AFG和△AFC中,

    ∴△AFG≌△AFC,
    ∴FG=FC,AG=AC=4,
    ∴F是CG的中点,
    又∵点E是BC的中点,
    ∴EF是△CBG的中位线,
    ∴.
    故答案为:1.
    本题考查了全等三角形的判定以及三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
    13、0.4m
    【解析】
    先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.
    【详解】
    ∵AB⊥BD,CD⊥BD,
    ∴∠ABO=∠CDO.
    ∵∠AOB=∠COD,
    ∴△OAB∽△OCD,
    ∴AO:CO=AB:CD,
    ∴4:1=1.6:CD,
    ∴CD=0.4.
    故答案为:0.4.
    本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)四边形是菱形,见解析;(2)见解析;(3)黄金矩形(或黄金矩形);(4)希腊的巴特农神庙(或巴黎圣母院).
    【解析】
    (1)根据菱形的判定即可求解;
    (2)根据菱形的性质及折叠得到,即可证明;
    (3)
    【详解】
    (1)解:
    四边形是菱形,
    理由如下:
    由矩形纸片可得,
    ∴,
    由折叠可得,
    ∴,
    ∴,
    又由折叠可得,
    ∴,
    ∴四边形是菱形;
    (2)证明:设的长度为2,
    由正方形可得,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴四边形是矩形,
    ∵,由折叠可得,,
    在中,根据勾股定理,,
    由折叠可得,
    ∴,
    ∴,
    ∴矩形是黄金矩形;
    (3)黄金矩形
    理由:AG=AD+DG=AB+DG=
    AH=2,

    ∴四边形AGEH为黄金矩形
    (4)希腊的巴特农神庙(或巴黎圣母院)
    此题主要考查矩形的性质与判定,解题的关键是熟知特殊平行四边形的判定与性质.
    15、(1)见解析 (2)
    【解析】
    分析:(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;
    (2)由AE⊥EC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由F为AC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.
    详解:(1) ∵CE∥AB,
    ∴∠EDA=∠DEC.
    ∵FA=FC ∠DFA=∠CFE,
    ∴△ADF≌△CEF(ASA) ,
    ∴AF=CF,
    ∴四边形ADCE是平行四边形;
    (2)∵AE⊥EC,
    综合(1)四边形ADCE是平行四边形,
    ∴四边形ADCE是矩形,
    ∴DE=2EF=2 ∠DCE= ,
    ∴DC= ,
    四边形ADCE的面积=CE·DC=.
    点睛:此题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定,勾股定理,得出△DAF≌△ECF 是解题关键.
    16、(1);(2)见解析.
    【解析】
    (1)周长;
    (2)当x=20时,周长=(或当x=时,周长=等).
    (答案不唯一,符合题意即可)
    17、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
    【详解】
    (1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,顶点在BC边上,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,
    ∴抛物线解析式为y=—(x﹣2)2+3,即y=—x2+3x;
    (2)△EDB为等腰直角三角形.
    证明:
    由(1)可知B(4,3),且D(3,0),E(0,1),
    ∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
    ∴DE2+BD2=BE2,且DE=BD,
    ∴△EDB为等腰直角三角形.
    此题考查二次函数综合题,解题关键在于利用勾股定理逆定理进行求证.
    18、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
    (2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥DC,
    ∴∠ABE=∠CDF,
    ∵AG=CH,
    ∴BG=DH,
    在△BEG和△DFH中,

    ∴△BEG≌△DFH(SAS);
    (2)∵△BEG≌△DFH(SAS),
    ∴∠BEG=∠DFH,EG=FH,
    ∴∠GEF=∠HFB,
    ∴GE∥FH,
    ∴四边形GEHF是平行四边形.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-2
    【解析】
    根据平均数的公式可得关于x的方程,解方程即可得.
    【详解】
    由题意得

    解得:x=-2,
    故答案为:-2.
    本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.
    20、1
    【解析】
    试题分析:数据x1,x2,…,xn的平均数设为a,则数据x1+3,x2+3,…,xn+3的平均数为a+3,
    根据方差公式:S2=[(x1-a)2+(x2-a)2+…(xn-a)2]=1.
    则数据x1+3,x2+3,… ,xn+3的方差
    S′2={[(x1+3)-(a+3)]2+[(x2+3)-(a+3)]2+…(xn+3)-(a+3)] 2}
    =[(x1-a)2+(x2-a)2+…(xn-a)2]
    =1.
    故答案为1.
    点睛:此题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.
    21、1
    【解析】
    过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=AD=BC,根据已知可求得∠CEF=∠ECF=15°,从而得∠BEF=15°,△BEF为等腰直角三角形,可得BF=EF=FC=BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.
    【详解】
    过点E作EM∥AD,交BD于M,设EM=x,
    ∵AB=OB,BE平分∠ABO,
    ∴△ABO是等腰三角形,点E是AO的中点,BE⊥AO,∠BEO=90°,
    ∴EM是△AOD的中位线,
    又∵ABCD是平行四边形,
    ∴BC=AD=2EM=2x,
    ∵EF⊥BC, ∠CAD=15°,AD∥BC,
    ∴∠BCA=∠CAD=15°,∠EFC=90°,
    ∴△EFC为等腰直角三角形,
    ∴EF=FC,∠FEC=15°,
    ∴∠BEF=90°-∠FEC=15°,
    则△BEF为等腰直角三角形,
    ∴BF=EF=FC=BC=x,
    ∵EM∥BF,
    ∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,
    则△BFP≌△MEP(ASA),
    ∴EP=FP=EF=FC=x,
    ∴在Rt△BFP中,,
    即:,
    解得:,
    ∴BC=2=1,
    故答案为:1.
    考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键.
    22、9 .
    【解析】
    作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF= ,即可得出结论.
    【详解】
    解:作DE⊥AB于点E,DF⊥AC于点F,
    ∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
    ∴DE=DF,
    又∵DE⊥AB于点E,DF⊥AC于点F,
    ∴∠AED=∠AFD=90°,
    又∵AD=AD,
    ∴Rt△ADE≌Rt△ADF(HL),
    ∴AE=AF;
    ∵∠MDN+∠BAC=180°,
    ∴∠AMD+∠AND=180°,
    又∵∠DNF+∠AND=180°
    ∴∠EMD=∠FND,
    又∵∠DEM=∠DFN,DE=DF,
    ∴△DEM≌△DFN,
    ∴S△DEM=S△DFN,
    ∴S四边形AMDN=S四边形AEDF,
    ∵,AD平分∠BAC,
    ∴∠DAF=30°,
    ∴Rt△ADF中,DF=3,AF= =3 ,
    ∴S△ADF= AF×DF=×3×3= ,
    ∴S四边形AMDN=S四边形AEDF=2×S△ADF=9 .
    故答案为9 .
    本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.
    23、
    【解析】
    根据二次根式有意义的条件:被开方数是非负数,即可求得x的值,进而求得y的值,然后代入求解即可.
    【详解】
    解:根据题意得:,解得:,
    ∴,
    ∴,
    故答案为.
    考查了二次根式的意义和性质.概念:式子(a≥1)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为1,这几个非负数都为1.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)①补全图形,如图一,见解析;②猜想DE=BC. 证明见解析;(2) ∠AED=30°或15°.
    【解析】
    (1)①根据要求画出图形即可解决问题.
    ②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.
    (2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.
    【详解】
    (1)①补全图形,如图一,
    ②猜想DE=BC.
    如图,连接OD交BC于点F,连接AF
    在△BDF和△COF中,
    ∴△BDF≌ΔCOF
    ∴DF=OF,BF=CF
    ∴F分别为BC和DO的中点
    ∵∠BAC=90°,F为BC的中点,
    ∴AF=BC.
    ∵OA=AE,F为BC的中点,
    ∴AF=ED.
    ∴DE=BC
    (2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,
    ∵AB=AC,
    ∴AF垂直平分线段BC,
    ∴MB=MC,∵∠OCB=30°,∠OBC=15°,
    ∴∠MBC=∠MCB=30°,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,
    ∵∠BAM=∠BOM=45°,BM=BM,
    ∴△BMA≌△BMO(AAS),
    ∴AM=OM,∠BMO=∠BMA=120°,
    ∴∠AMO=120°,
    ∴∠MAO=∠MOA=30°,
    ∴∠AED=∠MAO=30°.
    如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,
    ∴∠MAO=∠MBO=30°-15°=15°,
    ∵DE∥AM,
    ∴∠AED=∠MAO=15°,
    综上所述,满足条件的∠AED的值为15°或30°.
    本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    25、(1)38.48万元;(2)月租金定为1元.
    【解析】
    (1)由月租金比全部租出多4600-4000=600元,得出未租出6辆车,租出94辆车,进一步算得租赁公司的月收益即可;
    (2)设上涨x个100元,根据租赁公司的月收益可达到40.4万元列出方程解答即可.
    【详解】
    (1)因为月租金4600元,未租出6辆车,租出94辆车;
    月收益:94×(4600﹣500)﹣6×100=384800(元),即38.48万元.
    (2)设上涨x个100元,由题意得(4000+100x﹣500)(100﹣x)﹣100x=404000.
    整理得:x2﹣64x+540=0解得:x1=54,x2=10,
    因为规定每辆车月租金不能超过7200元,所以取x=10,4000+10×100=1.
    答:月租金定为1元.
    本题考查了一元二次方程的应用,解题的难点在于根据题意列出一元二次方程.
    26、(1)略;(2);
    【解析】
    (1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
    (2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
    【详解】
    (1)证明:∵在平行四边形ABCD中,AD∥BC,
    ∴∠DAB+∠ABC=180°,
    ∵AE、BF分别平分∠DAB和∠ABC,
    ∴∠DAB=2∠BAE,∠ABC=2∠ABF,
    ∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
    ∴∠AMB=10°,
    ∴AE⊥BF;
    (2)解:∵在平行四边形ABCD中,CD∥AB,
    ∴∠DEA=∠EAB,
    又∵AE平分∠DAB,
    ∴∠DAE=∠EAB,
    ∴∠DEA=∠DAE,
    ∴DE=AD,同理可得,CF=BC,
    又∵在平行四边形ABCD中,AD=BC,
    ∴DE=CF,
    ∴DF=CE,
    ∵EF=AD,
    ∴BC=AD=5EF,
    ∴DE=5EF,
    ∴DF=CE=4EF,
    ∴AB=CD=1EF,
    ∴BC:AB=5:1;
    故答案为5:1.
    本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    相关试卷

    湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学监测模拟试题【含答案】: 这是一份湖南省长沙市青竹湖湘一外国语学校2024-2025学年九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年八年级上学期数学开学模拟试卷: 这是一份湖南省长沙市开福区青竹湖湘一外国语学校2024-2025学年八年级上学期数学开学模拟试卷,共12页。

    2024年湖南省长沙市开福区青竹湖湘一外国语学校中考数学三模试卷(含答案): 这是一份2024年湖南省长沙市开福区青竹湖湘一外国语学校中考数学三模试卷(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map