河南省登封市大金店镇第二初级中学2024-2025学年数学九年级第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知a>b,c≠0,则下列关系一定成立的是( ).
A.ac>bcB.C.c-a>c-bD.c+a>c+b
2、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
则这些运动员成绩的中位数、众数分别为
A.、B.、C.、D.、
3、(4分)一个图形,无论是经过平移变换,还是经过旋转变换,下列说法都能正确的是( )
①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等
A.①②③B.①③④C.①②④D.②③④
4、(4分)点P(﹣1,2)关于y轴对称的点的坐标是( )
A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)
5、(4分)如图,有一块Rt△ABC的纸片,∠ABC=,AB=6,BC=8,将△ABC沿AD折叠,使点B落在AC上的E处,则BD的长为( )
A.3B.4C.5D.6
6、(4分)若式子在实数范围内有意义,则x的取值范围是( )
A.x>B.x>C.x≥D.x≥
7、(4分)如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.7,24,25B.,,C.6,8,10D.9,12,15
8、(4分)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量(升)与行驶时间(小时)之间的函数关系的图象是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在的两边上分别截取、,使;分别以点、为圆心,长为半径作弧,两弧交于点,连接、.若,四边形的面积为.则的长为______.
10、(4分)如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.
11、(4分)已知点,关于x轴对称,则________.
12、(4分)如图,直线与的交点坐标为,当时,则的取值范围是__________.
13、(4分)已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.
(1)求证:四边形ABCD是菱形;
(2)若求EF的长.
15、(8分)如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.
(1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;
(2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.
16、(8分)已知一个一次函数的图象与一个反比例函数的图象交于点.
分别求出这两个函数的表达式;
在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?
求平面直角坐标中原点与点构成的三角形的面积.
17、(10分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:
(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?
18、(10分)如图,在菱形中,是的中点,且,;
求:(1)的大小;
(2)菱形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形,然后再以矩形的中点为顶点作菱形,……,如此下去,得到四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为___.
20、(4分)如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.
21、(4分)已知方程的解满足x﹣y≥5,则k的取值范围为_____.
22、(4分)如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.
23、(4分)分式与的最简公分母是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:9-7+5.
25、(10分)王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年(1)班和八年(2)班进行了检测。如图所示表示从两班随机抽取的10名学生的得分情况:
(1)利用图中提供的信息,补全下表:
(2)你认为那个班的学生纠错的得分情况比较整齐一些,通过计算说明理由.
26、(12分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.
(1)先作出,再将向下平移5个单位长度后得到,请画出,;
(2)将绕原点逆时针旋转90°后得得到,请画出;
(3)判断以,,为顶点的三角形的形状.(无需说明理由)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据不等式的基本性质一一判断可得答案.
【详解】
解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误;
B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即.故本选项错误;
C、在不等式a>b的两边同时乘以负数-1,则不等号的方向发生改变,即-a<-b;然后再在不等式的两边同时加上c,不等号的方向不变,即c-a<c-b.故本选项错误;
D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确.
故选D.
本题主要考查的是不等式的基本性质.
不等式的性质1: 不等式两边加(或减)同一个数(或式子), 不等号的方向不变.即如果a>b, 那么ac>bc;
不等式的性质2: 不等式两边乘(或除)以同一个正数, 不等号的方向不变.即如果a>b, c>0, 那么ac>bc或(>);
不等式的性质3: 不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
本题考查1.中位数;2.众数,理解概念是解题关键.
3、D
【解析】
根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.
【详解】
解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;
②无论平移还是旋转,对应线段相等,故本小题正确;
@无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;
④无论平移还是旋转,对应角相等,故本小题正确.
综上所述,说法正确的②③④.故选D.
本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.
4、A
【解析】
解:根据关于y轴对称,横坐标互为相反数,纵坐标不变.故应选A
考点:关于x轴、y轴对称的点的坐标
5、A
【解析】
【分析】由题意可得∠AED=∠B=90°,AE=AB=6,由勾股定理即可求得AC的长,则可得EC的长,然后设BD=ED=x,则CD=BC-BD=8-x,由勾股定理CD2=EC2+ED2,即可得方程,解方程即可求得答案.
【详解】如图,点E是沿AD折叠,点B的对应点,连接ED,
∴∠AED=∠B=90°,AE=AB=6,
∵在Rt△ABC中,∠B=90°,AB=6,BC=8,
∴AC==10,
∴EC=AC-AE=10-6=4,
设BD=ED=x,则CD=BC-BD=8-x,
在Rt△CDE中,CD2=EC2+ED2,
即:(8-x)2=x2+16,
解得:x=3,
∴BD=3,
故选A.
【点睛】本题考查了折叠的性质与勾股定理,难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠中的对应关系.
6、D
【解析】
分析:根据二次根式有意义的条件:被开方数是非负数作答.
详解:根据二次根式的意义,被开方数2x-3≥0,解得x≥.故选D.
点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式的被开方数是非负数.
7、B
【解析】
根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.
【详解】
A. ,能组成直角三角形,故此选项错误;
B. ,不能组成直角三角形,故此选项正确;
C. ,能组成直角三角形,故此选项错误;
D. ,能组成直角三角形,故此选项错误;
故选:B.
本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
8、B
【解析】
根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.
【详解】
解:由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:
Q=40-5t(0≤t≤8),
结合解析式可得出图象:
故选:B.
此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.
【详解】
解:根据作图,AC=BC=OA,
∵OA=OB,
∴OA=OB=BC=AC,
∴四边形OACB是菱形,
∵AB=2cm,四边形OACB的面积为1cm2,
∴AB•OC=×2×OC=1,
解得OC=1cm.
故答案为:1.
本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形OACB是菱形是解题的关键.
10、
【解析】
解:∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=.
故答案为.
点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等腰直角三角形性质.
11、
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.
【详解】
解:∵点,关于x轴对称,
∴,
∴.
故答案为:.
此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.
12、
【解析】
在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.
【详解】
解:∵直线l1:y1=k1x+a与直线l2:y2=k2x+b的交点坐标是(1,2),
∴当x=1时,y1=y2=2.
而当y1≤y2时,即时,x≤1.
故答案为:x≤1.
此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.
13、3
【解析】
将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.
【详解】
把(a,3)代入一次函数解析式y=-2x+9,得
3=-2a+9,
解得:a=3,
故答案为:3.
本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)
【解析】
(1)证明,得出,即可得出结论;
(2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
,
∵BD平分,
,
,
,
是菱形;
(2)解:∵四边形ABCD是菱形,
,
,
∴四边形ABDE是平行四边形,,
,
,
,
是等腰直角三角形,
.
本题考查了平行四边形的性质与判定、菱形的判定与性质、等腰三角形的判定以及等腰直角三角形的判定与性质;熟练掌握菱形判定与性质是解决问题的关键.
15、(1),;(2).
【解析】
(1)先将点C坐标代入,利用待定系数法可求得y1的解析式,继而求得点A的坐标,点B坐标,根据B、C坐标利用待定系数法即可求得y2的解析式;
(2)分别过点作轴于点,轴于点,连接,由三角形中线的性质可得,再根据反比例函数的比例系数的几何意义可得,从而可得,设点的横坐标为,则点坐标表示为、,继而根据梯形的面积公式列式进行计算即可.
【详解】
(1)由已知,点在的图象上,
∴,∴,
∵点 的横坐标为,∴点为,
∵点与点关于原点对称,
∴为,
把,代入得,
解得:,
∴;
(2)分别过点作轴于点,轴于点,连接,
∵为中点 ,
∴
∵点在双曲线上,
∴
∴ ,
设点的横坐标为,
则点坐标表示为、,
∴,
解得 .
本题考查了反比例函数与一次函数综合,涉及了待定系数法,反比例函数k的几何意义,熟练掌握和灵活运用相关知识是解题的关键.
16、(1),;(2)图见详解,或;(3).
【解析】
(1)设反比例的函数解析式为,一次函数的解析式为,将点P代入可得k值,将点Q代入可得m值,将点P、Q代入求解即可;
(2)描点、连线即可画出函数的图象,当一次函数的图象在反比例函数图象的上方时,一次函数的值大于反比例函数的值,由此可确定x的取值;
(3)连接PO,QO,设直线与y轴交于点M,由求解.
【详解】
解:(1)设反比例的函数解析式为,一次函数的解析式为,
将点代入得,解得,
将点代入得,
将点,代入
得:,
解得
所以一次函数的表达式为,反比例函数的表达式为;
(2)函数和的图象如图所示,
由图象可得,当或时,一次函数的值大于反比例函数的值;
(3)如图,连接PO,QO,设直线与y轴交于点M,
直线与y轴的交点坐标M(0,-1),即,点P到y轴的距离为2,点Q到y轴的距离为1,
,
所以平面直角坐标中原点与点构成的三角形的面积为.
本题考查了一次函数与反比例函数的综合,涉及了待定系数法求函数解析式、画函数图象、根据函数图象及函数值的大小确定自变量的取值范围、围成的三角形的面积,熟练掌握待定系数法及运用数形结合的数学思想是解题的关键.
17、 (1)y=t(0≤t≤) (2)6小时
【解析】
(1) 将点代入函数关系式, 解得, 有
将代入, 得, 所以所求反比例函数关系式为;
再将代入, 得,所以所求正比例函数关系式为.
(2) 解不等式, 解得,
所以至少需要经过6小时后,学生才能进入教室.
18、(1);(2).
【解析】
(1)由为中点,,可证,从而是等边三角形,,进而可求的大小;
(2)由菱形的性质可求,从而,,根据勾股定理求出AO的长,然后根据菱形面积公式求解即可.
【详解】
(1)连接,
∵为中点,,
∴垂直平分,
∴,
∵四边形是菱形,
∴,
∴,
∴是等边三角形,
∴.
∴.
(2)在菱形中,,
∴,,
∴,
∴,
根据勾股定理可得:,
即,
∴.
此题考查了菱形的性质,等边三角形的判定与性质,含30度角的直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.
【详解】
∵菱形ABCD的对角线长分别为a、b,AC⊥BD,
∴S四边形ABCD=
∵以菱形ABCD各边的中点为顶点作矩形,根据中位线的性质可知
S四边形A1B1C1D1=S四边形ABCD=
…
则S四边形AnBnCnDn=S四边形ABCD=
故四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为.
故填:.
此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.
20、.
【解析】
由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,
∴AP=,
∵△ADP旋转后能够与△ABP′重合,
∴△ADP≌△ABP′,
∴AP′=AP=,∠BAP′=∠DAP,
∴∠PAP′=∠BAD=90°,
∴△PAP′是等腰直角三角形,
∴PP′=AP=;
故答案为:.
本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.
21、k≥1
【解析】
两方程相减可得x﹣y=4k﹣3,根据x﹣y≥5得出关于k的不等式,解不等式即可解答.
【详解】
两方程相减可得x﹣y=4k﹣3,
∵x﹣y≥5,
∴4k﹣3≥5,
解得:k≥1,
故答案为:k≥1.
本题考查一元一次不等式的应用,根据题意列出关于k的不等式是解题的关键.
22、
【解析】
设DP=x,根据,列出方程即可解决问题.
【详解】
解:设DP=x
∵, AD=BC=6,AB=CD=8,
又∵点为中点
∴BQ=CQ=3,
∴18=48− ⋅x⋅6− (8−x)⋅3−⋅8⋅3,
∴x=4,
∴DP=4
故答案为4cm
本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.
23、2a-2b
【解析】
根据确定最简公分母的方法求解即可.
【详解】
解:∵分式与的分母分别是:2a-2b=2(a-b),b-a=-(a-b),
∴最简公分母是2a-2b,
故答案为:2a-2b.
本题考查了最简公分母的定义及求法,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.
二、解答题(本大题共3个小题,共30分)
24、15
【解析】
先化简再计算,,,代入原式即可得出结果;
【详解】
解:原式,
.
本题主要考查了二次根式的加减运算,无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.
25、(1)八年(1)班的平均数为24,八年(2)班的中位数为24,众数为21;(2)八年(1)成绩比较整齐.
【解析】
【分析】(1)分别根据平均数、中位数、众数的定义逐一进行求解即可得;
(2)根据方差的公式分别计算两个班的方差进行比较即可得.
【详解】(1)由图可知八年(1)班的成绩分别为24、21、27、24、21、27、21、24、27、24,
所以八年(1)班的平均数分为(24+21+27+24+21+27+21+24+27+24)÷10=24分,
八年(2)班的成绩从小到大排列为:15、21、21、21、24、24、27、27、30、30,
八年(2)班的中位数为24,众数为21;
(2),
,
∵<,
∴ 八年(1)成绩比较整齐.
【点睛】本题考查了平均数,中位数,众数,方差,首先是从图形中读出数据,关键是掌握平均数,中位数,众数的概念、熟记方差的公式.
26、(1)见解析;(2)见解析;(3)等腰直角三角形
【解析】
(1)利用描点法作出△ABC,再利用点平移的坐标特征写出A、B、C的对应点A1、B1、C1,然后描点得到△A1B1C1;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2,C2,从而得△A2B2C2;
(3)利用勾股定理和勾股定理的逆定理可证明△OA1B为等腰直角三角形.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
(2)如图所示,△A2B2C2即为所求.
(3)三角形的形状为等腰直角三角形.
∵OB=,OA1=,BA1=,
∴OB2+OA12=BA12,
∴△OA1B为等腰直角三角形.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
题号
一
二
三
四
五
总分
得分
批阅人
成绩
人数
2
3
2
3
4
1
班级
平均分(分)
中位数(分)
众数(分)
八年(1)班
24
24
八年(2)班
24
2025届河南省登封市大金店镇第二初级中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2025届河南省登封市大金店镇第二初级中学数学九年级第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省登封市大金店镇第二初级中学2023-2024学年数学九年级第一学期期末预测试题含答案: 这是一份河南省登封市大金店镇第二初级中学2023-2024学年数学九年级第一学期期末预测试题含答案,共7页。试卷主要包含了已知函数是的图像过点,则的值为等内容,欢迎下载使用。
2023-2024学年河南省登封市大金店镇第二初级中学数学九上期末考试模拟试题含答案: 这是一份2023-2024学年河南省登封市大金店镇第二初级中学数学九上期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,模型结论等内容,欢迎下载使用。