2023-2024学年河南省登封市大金店镇第二初级中学八年级数学第一学期期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.满足-2<x≤1的数在数轴上表示为( )
A.B.C.D.
2.用四舍五入法将精确到千分位的近似数是( )
A.B.C.D.
3.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为( )
A.72°B.45°C.36°D.30°
4.已知一组数据,,,,的众数是,那么这组数据的方差是( )
A.B.C.D.
5.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为( )
A.4和7B.40和7C.39和40D.39.1和39
6.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后过点D作一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,OC的长为半径作弧,交数轴正半轴于一点,则该点位置大致在数轴上( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
8.下列二次根式中,最简二次根式的是( )
A.B.C.D.
9.如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是( )
A.24°B.30°C.32°D.36°
10.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B分别代表的是( )
A.分式的基本性质,最简公分母=0
B.分式的基本性质,最简公分母≠0
C.等式的基本性质2,最简公分母=0
D.等式的基本性质2,最简公分母≠0
二、填空题(每小题3分,共24分)
11.如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在射线OB上有一点P,从点P点射出的一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是___________
12.一列高铁列车从甲地匀速驶往乙地,一列特快列车从乙地匀速驶往甲地,两车同时出发,设特快列车行驶的时间为x(单位:时),特快列车与高铁列车之间的距离为y(单位:千米),y与x之间的函数关系如图所示,则图中线段CD所表示的y与x之间的函数关系式是_____.
13.将数字 1657900 精确到万位且用科学记数法表示的结果为__________.
14.分解因式:x2﹣7x+12 =________.
15.若的平方根是±3,则__________.
16.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.
17.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为_____
18.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为_________________________.
三、解答题(共66分)
19.(10分)计算:
(1)3a3b•(﹣1ab)+(﹣3a1b)1
(1)(1x+3)(1x﹣3)﹣4x(x﹣1)+(x﹣1)1.
20.(6分)如图,已知△ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).
(1)画出△ABC关于原点O成中心对称的图形△A′B′C′;
(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A″B″C″,并写出点B″的坐标.
21.(6分)综合与实践
(1)问题发现
如图1,和均为等边三角形,点在同一直线上,连接.请写出的度数及线段之间的数量关系,并说明理由.
(2)类比探究
如图2,和均为等腰直角三角形,,点在同一直线上,为中边上的高,连接.
填空:①的度数为____________;
②线段之间的数量关系为_______________________________.
(3)拓展延伸
在(2)的条件下,若,则四边形的面积为______________.
22.(8分)若式子无意义,求代数式(y+x)(y-x)+x2的值.
23.(8分)某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.
(1)求该公司购买的、型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?
24.(8分)如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE, 垂足为F,过B作BD⊥BC交CF的延长线于D.
求证:(1)AE=CD.(2)若AC=12cm,求BD的长.
25.(10分)如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.
(1)求∠ADB的度数 .
(2)判断△ABE的形状并证明 .
(3)连结DE,若DE⊥BD,DE=6,求AD的长
26.(10分)如图,在△ABC中,∠A=30°,∠B=60°
(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);
(2)连接DE,求证:△ADE≌△BDE.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、C
4、A
5、C
6、B
7、D
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、80°
12、y=100x
13、1.66×1
14、 (x-4)(x-3)
15、1
16、3
17、8
18、(2,4)或(4,2).
三、解答题(共66分)
19、 (1)3a4b1; (1)x1﹣5.
20、见解析
21、(1),证明详见解析;(2)①;②;(3)35
22、
23、(1)A型芯片的单价为2元/条,B型芯片的单价为35元/条;(2)1.
24、(1)见解析;(2)6
25、(1)150°;(2)△ABE是等边三角形,理由详见解析;(1)1.
26、(1)作图见解析;(2)证明见解析.
尺码
37
38
39
40
41
42
人数
3
4
4
7
1
1
河南省登封市大金店镇第二初级中学2023-2024学年数学九年级第一学期期末预测试题含答案: 这是一份河南省登封市大金店镇第二初级中学2023-2024学年数学九年级第一学期期末预测试题含答案,共7页。试卷主要包含了已知函数是的图像过点,则的值为等内容,欢迎下载使用。
2023-2024学年河南省登封市大金店镇第二初级中学数学九上期末考试模拟试题含答案: 这是一份2023-2024学年河南省登封市大金店镇第二初级中学数学九上期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,模型结论等内容,欢迎下载使用。
山东省寿光市纪台镇第二初级中学2023-2024学年数学八年级第一学期期末质量跟踪监视试题含答案: 这是一份山东省寿光市纪台镇第二初级中学2023-2024学年数学八年级第一学期期末质量跟踪监视试题含答案,共8页。