|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】
    立即下载
    加入资料篮
    河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】01
    河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】02
    河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】

    展开
    这是一份河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,点、分别是、的中点,平分,交于点,若,则的长是( )
    A.B.C.D.
    2、(4分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
    A.3:4B.9:16C.9:1D.3:1
    3、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过B点作于点G,延长BG交AD于点H. 在下列结论中:①AH=DF;②∠AEF=45°;③. 其中不正确的结论有( )
    A.1个B.2个C.3个D.0个
    4、(4分)关于的分式方程有增根,则的值为
    A.0B.C.D.
    5、(4分)如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )
    A.16cmB.18cmC.20cmD.24cm
    6、(4分)在同一直角坐标系中,函数y=-kx+k与y= (k≠0)的图象大致是( )
    A.B.C.D.
    7、(4分)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为( )
    A.6B.8C.12D.10
    8、(4分)已知一次函数的图象如图所示,当时,y的取值范围是
    A.
    B.
    C.
    D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为_____.
    10、(4分)已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.
    11、(4分)在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与轴的交点坐标为__________.
    12、(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.
    13、(4分)请写出一个图形经过一、三象限的正比例函数的解析式 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?
    15、(8分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
    (1)求此抛物线的解析式;
    (2)求S△ABC的面积.
    16、(8分)小东拿着一根长竹竿进一个宽为5米的矩形城门,他先横着拿但进不去;又竖起来拿,结果竹竿比城门还高1米,当他把竹竿左右斜着拿时,两端刚好顶着城门的对角,问竹竿长多少米?
    17、(10分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.
    求证:四边形AGCH是平行四边形.
    18、(10分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:
    (1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm), 求y与x的关系式;
    (2)每本字典的厚度为多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________ 。
    20、(4分)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.
    21、(4分)已知,则的值是_____________.
    22、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
    23、(4分)在中,,则___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方ABCD中,E是AB边上任一点,BG⊥CE,垂足为O,交AC于点F,交AD于点G.
    (1)证明:BE=AG;
    (2)E位于什么位置时,∠AEF=∠CEB?说明理由.
    25、(10分)随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
    26、(12分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先证明DE是中位线,由此得到DE∥AB,再根据角平分线的性质得到DF=BD,由此求出答案.
    【详解】
    ∵点、分别是、的中点,
    ∴DE是△ABC的中位线,BD=BC=3,
    ∴DE∥AB,
    ∴∠ABF=∠DFB,
    ∵平分,
    ∴∠ABF=∠CBF,
    ∴∠DFB=∠CBF,
    ∴BD=FD,
    ∴DF=3,
    故选:B.
    此题考查三角形的中位线定理,等腰三角形的性质,角平分线的性质,熟记定理并运用解题是关键.
    2、B
    【解析】
    可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴DC∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=3:1,
    ∴DE:DC=3:4,
    ∴DE:AB=3:4,
    ∴S△DFE:S△BFA=9:1.
    故选B.
    3、A
    【解析】
    先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.
    【详解】
    ∵BD是正方形ABCD的对角线,
    ∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
    ∵BE=BC,
    ∴AB=BE,
    ∵BG⊥AE,
    ∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
    在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
    ∵∠AGH=90°,
    ∴∠DAE=∠ABH=22.5°,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴∠DAE=∠DCE=22.5°,
    ∴∠ABH=∠DCF,
    在Rt△ABH和Rt△DCF中

    ∴Rt△ABH≌Rt△DCF,
    ∴AH=DF,∠CFD=∠AHB=67.5°,
    ∵∠CFD=∠EAF+∠AEF,
    ∴67.5°=22.5°+∠AEF,
    ∴∠AEF=45°,故①②正确;
    如图,连接HE,
    ∵BH是AE垂直平分线,
    ∴AG=EG,
    ∴S△AGH=S△HEG,
    ∵AH=HE,
    ∴∠AHG=∠EHG=67.5°,
    ∴∠DHE=45°,
    ∵∠ADE=45°,
    ∴∠DEH=90°,∠DHE=∠HDE=45°,
    ∴EH=ED,
    ∴△DEH是等腰直角三角形,
    ∵EF不垂直DH,
    ∴FH≠FD,
    ∴S△EFH≠S△EFD,
    ∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
    ∴正确的是①②,
    故选A.
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
    4、D
    【解析】
    分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.
    详解:方程两边都乘(x+2),
    得:x-5=m,
    ∵原方程有增根,
    ∴最简公分母:x+2=0,
    解得x=-2,
    当x=-2时,m=-1.
    故选D.
    点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:
    ①让最简公分母为0确定增根;
    ②化分式方程为整式方程;
    ③把增根代入整式方程即可求得相关字母的值.
    5、C
    【解析】
    首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.
    【详解】
    将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,
    由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,
    SF=20 cm,
    故选C.
    本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
    6、C
    【解析】
    当k>0时,函数y=-kx+k的图象分布在第一、二、四象限,函数y= 的图象位于第一、三象限。
    故本题正确答案为C.
    7、D
    【解析】
    要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
    【详解】
    解:如图,连接BM,
    ∵点B和点D关于直线AC对称,
    ∴NB=ND,
    则BM就是DN+MN的最小值,
    ∵正方形ABCD的边长是8,DM=2,
    ∴CM=6,
    ∴BM==1,
    ∴DN+MN的最小值是1.
    故选:D.
    此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.
    8、D
    【解析】
    观察图象得到直线与x轴的交点坐标为(2,1),且图象经过第一、三象限, y随x的增大而增大,所以当x<2时,y<1.
    【详解】
    解:∵一次函数y=kx+b与x轴的交点坐标为(2,1),且图象经过第一、三象限,
    ∴y随x的增大而增大,
    ∴当x<2时,y<1.
    故选:D.
    本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    根据题意方程有两个相等实根可知△=0,代入求值即可解题.
    【详解】
    ∵关于x的方程kx2﹣6x+9=0有两个相等的实数根,
    ∴△=(﹣6)2﹣4k×9=0且k≠0,
    解得:k=1,
    故答案为:1.
    本题考查了一元二次方程根的判别式,本题解题关键是根据题意得到根的情况,代值到判别式即可解题.
    10、
    【解析】
    写一个经过一、三象限的反比例函数即可.
    【详解】
    反比例函数与有交点.
    故答案为:.
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
    11、.
    【解析】
    先根据平移特点求出新函数解析式,然后再求解新函数与x轴的交点坐标.
    【详解】
    解:由“上加下减”的平移规律可知:将函数的图象向上平移6个单位长度所得到的的新函数的解析式为:,
    令,得:,
    解得:,
    ∴与轴的交点坐标为,
    故答案为:.
    本题考查的是一次函数的图象与几何变换,熟知平移的规律——上加下减,左加右减是解答此题的关键.
    12、(﹣,1)
    【解析】
    如图作AF⊥x轴于F,CE⊥x轴于E.
    ∵四边形ABCD是正方形,
    ∴OA=OC,∠AOC=90°,
    ∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
    ∴∠COE=∠OAF,
    在△COE和△OAF中,

    ∴△COE≌△OAF,
    ∴CE=OF,OE=AF,
    ∵A(1,),
    ∴CE=OF=1,OE=AF=,
    ∴点C坐标(﹣,1),
    故答案为(,1).
    点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
    13、y=x(答案不唯一)
    【解析】
    试题分析:设此正比例函数的解析式为y=kx(k≠1),
    ∵此正比例函数的图象经过一、三象限,∴k>1.
    ∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).
    三、解答题(本大题共5个小题,共48分)
    14、A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.
    【解析】
    设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,列方程进行求解即可.
    【详解】
    设B型机器人每小时搬运kg化工原料,则A型机器人每小时搬运kg化工原料,由题意得,

    解此分式方程得:,
    经检验是分式方程的解,且符合题意,
    当时,,
    答:A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.
    本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.
    15、 (1) y=x2+2x﹣3;(2)1.
    【解析】
    (1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值;
    (2)根据(1)中抛物线的解析式可求出C点的坐标,然后根据三角形的面积公式即可求出△ABC的面积.
    【详解】
    (1)当x=0时,y=x﹣3=﹣3,则B(0,﹣3);
    当y=0时,x﹣3=0,解得x=3,则A(3,0),
    把A(3,0),B(0,﹣3)代入y=x2+bx﹣c得,解得,
    ∴抛物线的解析式为y=x2+2x﹣3;
    (2)当y=0时,x2+2x﹣3=0,解得x1=﹣1,x2=3,则C(﹣1,0),
    ∴S△ABC=×(3+1)×3=1.
    本题主要考查了一次函数与坐标轴的交点,二次函数解析式的确定、三角形面积的求法等知识点.考查了学生数形结合的数学思想方法.
    16、12米
    【解析】
    可设竹竿长为x,再根据竹竿比城门高1米,竹竿左右斜着拿时,两端刚好顶着城门的对角,利用勾股定理可得结果.
    【详解】
    解:设竹竿长x米,
    x2=(x-1)2+52;,解得x=12,答:竹竿长为12米.
    本题考查勾股定理的应用,学生需要掌握勾股定理的定义即可求解.
    17、证明见解析.
    【解析】
    法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;
    法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.
    证明:在□ABCD中,AD∥BC,AB∥CD,
    ∵CF⊥AD,∴CF⊥BC,
    ∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,
    ∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,
    ∴∠AGB=∠DHC,
    ∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,
    ∴AG=CH,
    ∴四边形AGCH是平行四边形;
    法2:连接AC,与BD相交于点O,
    在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,
    ∴∠ABG=∠CDH,
    ∵CF⊥AD,AE⊥BC,
    ∴∠AEB=∠CFD=90°,
    ∴∠BAG=∠DCH,
    ∴△ABG≌CDH,
    ∴BG=DH,
    ∴BO﹣BG=DO﹣DH,
    ∴OG=OH,
    ∴四边形AGCH是平行四边形.
    “点睛”此题考查了平行四边形的判定与性质,熟练掌握平式子变形的判定与性质是解本题的关键.
    18、(1)y=5x+85,(2)5cm.
    【解析】
    分析:(1)利用待定系数法即可解决问题;
    (2)每本字典的厚度==5(cm).
    详(1)解:根据题意知y与x之间是一次函数关系,故设y与x之间的关系的关系式为y=kx+b则

    解得:k=5,b=85
    ∴关系式为y=5x+85,
    (2)每本字典的厚度==5(cm).
    点睛:本题考查一次函数的应用、解题的关键是熟练掌握待定系数法解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.
    【详解】
    四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°
    AC=CD=2,∠ACD=90°
    △ACD为等腰直角三角形
    ∴BC=AD==.
    故答案是:.
    考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.
    20、150, 60
    【解析】
    分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.
    详解:由题意可知小亮的路径是一个正多边形,
    ∵每个外角等于30°,
    ∴每个内角等于150°.
    ∵正多边形的外角和为360°,
    ∴正多边形的边数为360°÷30°=12(边).
    ∴小亮走的周长为5×12=60.
    点睛:本题主要考查了多边形的内角与外角,牢记多边形的内角与外角概念是解题关键.
    21、7
    【解析】
    把已知条件两个平方,根据完全平方公式展开整理即可得解;
    【详解】
    解:;
    本题考查了完全平方公式的运用,熟练掌握公式的特点是解题的关键
    22、x>1
    【解析】
    根据分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
    【详解】
    ∵代数式在实数范围内有意义,
    ∴.
    故答案为:x>1.
    本题考查二次根式及分式有意义的条件,掌握二次根式及分式有意义的条件是解答此题的关键.
    23、.
    【解析】
    根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°;再根据∠A+∠C=120°计算出∠A的度数,进而可算出∠B的度数.
    【详解】
    四边形是平行四边形,
    ,,



    故答案为:.
    本题是一道有关平行四边形的题目,掌握平行四边形的性质是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)见解析;(2)当点E位于线段AB中点时,∠AEF=∠CEB ,理由见解析
    【解析】
    (1) 根据正方形的性质利用ASA判定△GAB≌△EBC,根据全等三角形的对应边相等可得到AG=BE;
    (2) 利用SAS判定△GAF≌△EAF,从而得到∠AGF=∠AEF,由△GAB≌△EBC可得到∠AGF=∠CEB,则∠AEF=∠CEB.
    【详解】
    (1)证明:∵四边形ABCD是正方形
    ∴∠ABC=∠BAD=90°,∴∠1+∠3=90°,
    ∵BG⊥CE,∴∠BOC=90°∴∠2+∠3=90°,
    ∴∠1=∠2,
    在△GAB和△EBC中,
    ∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2,
    ∴△GAB≌△EBC (ASA) ,
    ∴AG=BE;
    (2)解:当点E位于线段AB中点时,∠AEF=∠CEB ,
    理由如下:若当点E位于线段AB中点时,则AE=BE,
    由(1)可知,AG=BE,
    ∴AG=AE,
    ∵四边形ABCD是正方形,
    ∴∠GAF=∠EAF=45°,
    又∵AF=AF,
    ∴△GAF≌△EAF (SAS),
    ∴∠AGF=∠AEF,
    由(1)知,△GAB≌△EBC,
    ∴∠AGF=∠CEB,
    ∴∠AEF=∠CEB.
    考查了全等三角形的判定,正方形的性质等知识点,利用全等三角形来得出线段相等是这类题的常用方法.
    25、.
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
    【详解】
    解:将微信记为A、支付宝记为B、银行卡记为C,
    画树状图如下:
    ∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
    ∴两人恰好选择同一种支付方式的概率为.
    此题考查列表法与画树状图法,解题关键在于画出树状图.
    26、AC与EF互相平分,见解析.
    【解析】
    由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.
    【详解】
    AC与EF互相平分
    ∵▱ABCD
    ∴AB∥CD,AB=CD
    ∴∠BAC=∠ACD
    ∵AB=CD,AE=CF,BE=DF
    ∴△ABE≌△CDF
    ∴∠BAE=∠FCD且∠BAC=∠ACD
    ∴∠EAC=∠FCA
    ∴CF∥AE且AE=CF
    ∴四边形AECF是平行四边形
    ∴AC与EF互相平分
    本题考查了平行四边形的性质,全等三角形的判定和性质,证AECF是平行四边形是本题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    河北省景县2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份河北省景县2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河北省衡水市武邑中学2025届数学九年级第一学期开学经典模拟试题【含答案】: 这是一份河北省衡水市武邑中学2025届数学九年级第一学期开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河北省唐山市玉田县数学九年级第一学期开学经典试题【含答案】: 这是一份2024-2025学年河北省唐山市玉田县数学九年级第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map