2024-2025学年河北省衡水市枣强县九年级数学第一学期开学联考试题【含答案】
展开
这是一份2024-2025学年河北省衡水市枣强县九年级数学第一学期开学联考试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知数据的平均数是10,方差是6,那么数据的平均数和方差分别是( )
A.13,6B.13,9C.10,6D.10,9
2、(4分)下列二次根式中,与是同类二次根式的是( )
A.B.C.D.
3、(4分)已知:如图,在菱形中,,,落在轴正半轴上,点是边上的一点(不与端点,重合),过点作于点,若点,都在反比例函数图象上,则的值为( )
A.B.C.D.
4、(4分)下列运算正确的是( )
A.B.C.D.
5、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为( )
A.(1,2)B.(4,2)C.(2,4)D.(2,1)
6、(4分)下列函数中,自变量x的取值范围是x≥3的是( )
A.B.C.D.
7、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
8、(4分)一次函数的图象经过点,且的值随的增大而增大,则点的坐标可以为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知一次函数的图象为直线,则关于x的方程的解______.
10、(4分)如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为_____.
11、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.
12、(4分)使分式的值为整数的所有整数的和是________.
13、(4分)如图,在中,,,点、分别是边、上的动点.连接、,点、分别是、的中点,连接.则的最小值为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形的两条边、分别在轴和轴上,已知点 坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.
(1)线段 ;
(2)求点坐标及折痕的长;
(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
15、(8分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证△ACD≌△BFD
(2)求证:BF=2AE;
(3)若CD=,求AD的长.
16、(8分)如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.
(1)求此抛物线的解析式(a、b、c可用含n的式子表示);
(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D(x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E的坐标;
(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.
17、(10分) “中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节日,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习智慧学校开展了一次全校性的:“汉字听写”比赛,每位参赛学生听写个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数绘制成了以下不完整的统计图.
根据图表信息解答下列问题:
(1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数在 范围内的人数最多,补全频数分布直方图;
(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
18、(10分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
(1)求证:∠A=2∠CBD;
(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
20、(4分)一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)
21、(4分)一元二次方程x2﹣4=0的解是._________
22、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
23、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天?
(2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?
25、(10分)已知直线分别交x轴于点A、交y轴于点
求该直线的函数表达式;
求线段AB的长.
26、(12分)解一元二次方程:(1);(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据样本数据的平均数与方差,可以推导出数据的平均数与方差.
【详解】
解:由题意得平均数,方差,
∴的平均数,
方差,故选A.
本题考查了样本数据的平均数与方差的应用问题,解题时可以推导出结论,也可以利用公式直接计算出结果,是基础题目.
2、C
【解析】
判断是否为同类二次根式必须先化为最简二次根式,若化为最简二次根式后,被开方数相同则为同类二次根式.
【详解】
解:A、,与不是同类二次根式;
B、,与不是同类二次根式;
C、,与是同类二次根式;
D、,与不是同类二次根式;
故选C.
主要考查如何判断同类二次根式,需注意的是必需先化为最简二次根式再进行判断.
3、C
【解析】
过作,交于,根据菱形的性质得出四边形是平行四边形,,,解直角三角形求得,作轴于,过点作于,解直角三角形求得,,设,则,根据反比例函数系数的几何意义得出,解得,从而求得的值.
【详解】
解:如图,过作,交于,
在菱形中,,,
,,,,
,四边形是平行四边形,
,
于点,
,
作轴于,过点作于,
,,
,
,
,
,
,,,
设,则,
点,都在反比例函数图象上,
,
解得,
,,
.
故选.
本题考查了反比例函数系数的几何意义,菱形的性质,解直角三角形等,求得点的坐标是解题的关键.
4、D
【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.
【详解】
A. 不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C. ,故C错误;
D. 故D正确.
故选D.
本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.
5、D
【解析】
根据三角形的中位线的性质和点的坐标,解答即可.
【详解】
过N作NE⊥y轴,NF⊥x轴,
∴NE∥x轴,NF∥y轴,
∵点A(0,2),B(4,0),点N为线段AB的中点,
∴NE=2,NF=1,
∴点N的坐标为(2,1),
故选:D.
本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.
6、D
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:
A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;
C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.
7、C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
8、C
【解析】
根据函数图象的性质判断y的值随x的增大而增大时,k>0,由此得到结论.
【详解】
∵一次函数y=kx-1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(-5,3)代入y=kx-1得到:k=-<0,不符合题意;
B、把点(5,-1)代入y=kx-1得到:k=0,不符合题意;
C、把点(2,1)代入y=kx-1得到:k=1>0,符合题意;
D、把点(1,-3)代入y=kx-1得到:k=-2<0,不符合题意;
故选C.
考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
解:根据图象可得,一次函数y=ax+b的图象经过(1,1)点,
因此关于x的方程ax+b=1的解x=1.
故答案是1.
本题考查一次函数与一元一次方程,利用数形结合思想解题是关键.
10、1.
【解析】
根据题意方程有两个相等实根可知△=0,代入求值即可解题.
【详解】
∵关于x的方程kx2﹣6x+9=0有两个相等的实数根,
∴△=(﹣6)2﹣4k×9=0且k≠0,
解得:k=1,
故答案为:1.
本题考查了一元二次方程根的判别式,本题解题关键是根据题意得到根的情况,代值到判别式即可解题.
11、18
【解析】
利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24 ,求得CD=9,即可求得BC的长.
【详解】
∵AB=AC,AD平分∠BAC,
∴BD=CD,AD⊥BC,
∵E为AC中点,
∴CE=AC==7.5,DE=AB==7.5,
∵CD+DE+CE=24,
∴CD=24-7.5-7.5=9,
∴BC=18,
故答案为18 .
本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.
12、1
【解析】
由于分式的值为整数,m也是整数,则可知m-1是4的因数,据此来求解.
【详解】
解:∵分式的值为整数,
∴是4的因数,
∴,,,
又∵m为整数,,
∴m=5,3,2,0,-1,-3,
则它们的和为:5+3+2+0+(-1)+(-3)=1,
故答案为:1.
本题考查了分式的值,要注意分母不能为0,且m为整数.
13、
【解析】
连接AG,利用三角形中位线定理,可知,求出AG的最小值即可解决问题.
【详解】
解:如图1,连接,
∵点、分别是、的中点,
∴,
∴的最小值,就是的最小值,
当时,最小,如图2,
中,,
∴,
∵,
∴,,
∴,
∴的最小值是.
故答案为:.
本题考查平行四边形的性质、三角形的中位线定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是确定EF的最小值,就是AG的最小值,属于中考填空题中的压轴题.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);拆痕DE的长为; (3)点Q坐标为
【解析】
(1)根据B点的坐标即可求得AC的长度.
(2)首先根据已知条件证明,再根据相似比例计算DF、CD的长度
即可计算出D点的坐标,再证明,根据EF=DF,即可计算的DE的长度.
(3)根据等腰三角形的性质,分类讨论第一种情况当时;第二种情况当时;第三种情况当时,分别计算即可.
【详解】
解:(1)
(2),由折叠可得:
,.
∵四边形OABC是矩形,
∴拆痕DE的长为
(3)由(2)可知,,
若以P、D、E、Q为顶点的四边形是菱形,则必为等腰三角形。
当时,可知,
此时PE为对角线,可得
当时,可知,此时DP为对角线,可得;
当时,P与C重合,Q与A重合,
综上所述,满足条件的点Q坐标为
本题主要考查菱形的基本性质,难点在于第三问中的等腰三角形的分类讨论,根据等腰三角形的腰进行分类,再根据腰相等进行计算.
15、(1)见解析;(1)见解析;(3)AD =1+
【解析】
(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;
(1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;
(3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.
【详解】
(1)∵AD⊥BC,∠BAD=45°,
∴△ABD是等腰直角三角形,∴AD=BD,
∵BE⊥AC,AD⊥BC,
∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,
∴∠CAD=∠CBE,
在△ADC和△BDF中,
∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,
∴△ACD≌△BFD(ASA)
(1)由(1)可知:BF=AC
∵AB=BC,BE⊥AC,
∴AC=1AE,
∴BF=1AE;
(3) ∵△ACD≌△BFD,
∴DF=CD=,
在Rt△CDF中,CF=,
∵BE⊥AC,AE=EC,
∴AF=CF=1.
∴AD=AF+DF=1+
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.
16、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.
【解析】
(3)先根据四边形ABCD是矩形,点B的坐标为(n,3)(n>5),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标;把A、A′、C′三点的坐标代入即可得出a、b、c的值,进而得出其抛物线的解析式;
(2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k-2)x-3=5,根据根与系数的关系求出k的值,进而求出D(-3,5),E(3,4);
(2)设P(5,p),根据平行四边形性质及点M坐标可得Q(2,4+p),分P点在AM下方与P点在AM上方两种情况,根据重合部分的面积关系及对称性求得点P的坐标后即可得▱APQM面积.
【详解】
解:(3)∵四边形ABCO是矩形,点B的坐标为(n,3)(n>5),
∴A(n,5),C(5,3),
∵矩形OA′B′C′由矩形OABC旋转而成,
∴A′(5,n),C′(﹣3,5);
将抛物线解析式为y=ax2+bx+c,
∵A(n,5),A′(5,n),C′(﹣3,5),
∴ ,
解得,
∴此抛物线的解析式为:y=﹣x2+(n﹣3)x+n;
(2)对称轴为x=3,得﹣=3,解得n=2,
则抛物线的解析式为y=﹣x2+2x+2.
由,
整理可得x2+(k﹣2)x﹣3=5,
∴x3+x2=﹣(k﹣2),x3x2=﹣3.
∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.
∴当k=2时,(x3﹣x2)2的最小值为4,即|x3﹣x2|的最小值为2,
∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.
∴当|x3﹣x2|最小时,抛物线与直线的交点为D(﹣3,5),E(3,4);
(2)①当P点在AM下方时,如答图3,
设P(5,p),易知M(3,4),从而Q(2,4+p),
∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
∴PQ′必过AM中点N(5,2),
∴可知Q′在y轴上,
易知QQ′的中点T的横坐标为3,而点T必在直线AM上,
故T(3,4),从而T、M重合,
∴▱APQM是矩形,
∵易得直线AM解析式为:y=2x+2,
∵MQ⊥AM,
∴直线QQ′:y=﹣x+,
∴4+p=﹣×2+,
解得:p=﹣,
∴PN=,
∴S▱APQM=2S△AMP=4S△ANP=4××PN×AO=4×××3=5;
②当P点在AM上方时,如答图2,
设P(5,p),易知M(3,4),从而Q(2,4+p),
∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
∴PQ′必过QM中点R(,4+),
易得直线QQ′:y=﹣x+p+5,
联立,
解得:x=,y= ,
∴H(,),
∵H为QQ′中点,
故易得Q′(,),
由P(5,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,
将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,
整理得:p2﹣9p+34=5,
解得p3=7,p2=2(与AM中点N重合,舍去),
∴P(5,7),
∴PN=5,
∴S▱APQM=2S△AMP=2××PN×|xM﹣xA|=2××5×2=3.
综上所述,▱APQM面积为5或3.
本题为二次函数的综合应用,涉及待定系数法确定函数解析式、二次函数的性质、一元二次方程根与系数的关系、方程思想及分类讨论思想等知识点.在(2)中利用求得n的值是解题的关键,在(2)中确定出k的值是解题的关键,在(2)中根据点P的位置分类讨论及根据已知条件求出点P的坐标是解决本题的难点.
17、(1)50; ;补全频数分布直方图见解析;(2)23
【解析】
(1)根据一组的人数是10,所占的百分比是20%,即可求出总人数;根据扇形统计图中每个扇形的圆心角的大小解判断哪个范围的人数最多;根据百分比的意义即可求得一组的人数,进而求得组的人数,从而补全直方图;
(2)利用加权平均数公式即可求解.
【详解】
(1)抽取的学生人数是10÷20%=50(人);
听写正确的汉字个数范围内的人数最多;
一组的人数是:50×30%=15(人)
一组的人数是:50﹣5﹣15﹣10=20(人)
补全频数分布直方图如下:
(2)(个)
答:被调查学生听写正确的汉字个数的平均数是23个.
本题为考查统计的综合题,考点涉及扇形统计图、样本估计总体、频数(率)分布直方图、加权平均数等知识点,难度不大,熟练掌握统计的相关知识点是解答本题的关键.
18、(1)见解析;(2)1;(3)△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
【解析】
(1)根据等腰三角形两个底角相等可以进一步证明∠A=2∠CBD,
(2) 根据题意描述,可以确定AB=5,AB+BC=8,再通过作DE⊥AB于来构造直角三角形可以求出CD长度.
(3) 根据题目描述分情况来讨论哪个点为等腰三角形顶点,进而列方程进行求出P点位置情况.
【详解】
(1)证明:∵AB∥CD,BC⊥AB,AB=AD,
∴∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,
∴∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,
∴∠A=2∠CBD;
(2)解:由图(b)得:AB=5,AB+BC=8,
∴BC=3,作DE⊥AB于E,如图所示:
则DE=BC=3,CD=BE,
∵AD=AB=5,
∴AE==4,
∴CD=BE=AB﹣AE=1;
(3)解:可能;理由如下:
分情况讨论:
①点P在AB边上时,
当PD=PB时,P与A重合,x=0;
当DP=DB时,BP=2BE=2,
∴AP=3,
∴x=3;
当BP=BD==时,AP=5﹣,
即x=5﹣;
②点P在BC上时,存在PD=PB,
此时,x=5+=;
③点P在AD上时,
当BP=BD=时,x=5+3+1+2=10;
当DP=DB=时,x=5+3+1+=9+;
综上所述:△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
本题主要考察学生对等腰三角形的性质、数形结合能力、还有分类讨论问题的能力,掌握数性结合运用是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
20、增大
【解析】
根据一次函数图象经过一、三、四象限,可以得出>0,b0即可得到结论.
【详解】
∵一次函数图象经过一、三、四象限,
∴>0,b0,
∴反比例函数图象在第四象限,且y随着x的增大而增大,
故答案为:增大.
本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.
21、x=±1
【解析】
移项得x1=4,
∴x=±1.
故答案是:x=±1.
22、
【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
【详解】
解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=
,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,
,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.
本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.
23、8
【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.
考点:平行四边形的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)甲队单独完成此项任务需1天,乙队单独完成此项任务需20天;(2)甲队至少再单独施工2天.
【解析】
(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x的一元一次方程,解之即可得出结论;
(2)设甲队再单独施工y天,根据甲队完成的工作量+乙队完成的工作量不少于总工作量(1),即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,
依题意,得:,
解得:x=20,
经检验,x=20是原方程的解,
∴x+2=1.
答:甲队单独完成此项任务需1天,乙队单独完成此项任务需20天.
(2)设甲队再单独施工y天,
依题意,得:
,
解得:y≥2.
答:甲队至少再单独施工2天.
本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,一元一次不等式的应用,解答时验根是学生容易忽略的地方.
25、(1);(2)AB=.
【解析】
把B点坐标代入中求出b即可;
先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.
【详解】
解:把代入得,
所以该直线的函数表达式为;
当时,,解得,则,
所以AB的长.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
26、(1), ;(2)或
【解析】
(1)先变形为4x(2x-1)+2x-1=0,然后利用因式分解法解方程;
(2) 先把方程化为一般式,然后利用求根公式法解方程;
【详解】
解:(1)4x(2x-1)+2x-1=0,
(2x-1)(4x+1)=0,
2x-1=0或4x+1=0,
所以,;
(2).
3x2-5x-2=0,
△=(-5)2-4×3×(-2)=49,
所以或;
本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
题号
一
二
三
四
五
总分
得分
批阅人
听写正确的汉字个数
组中值
相关试卷
这是一份2024-2025学年河北省沧州青县联考九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省沧州沧县联考九年级数学第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省衡水市枣强县2023-2024学年八年级下学期月考数学试题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。