成都青羊区四校联考2024年数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是( )
A.B.C.D.
2、(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是( )
A.10 B.9 C.8 D.6
3、(4分)已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )
A.平均数但不是中位数B.平均数也是中位数
C.众数D.中位数但不是平均数
4、(4分)不等式2x+1>x+2的解集是( )
A.x>1B.x<1C.x≥1D.x≤1
5、(4分)如图,在矩形中,对角线、相交于点,垂直平分,若cm,则()
A.B.C.D.
6、(4分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列说法:四边形ACED是平行四边形,△BCE是等腰三角形,四边形ACEB的周长是10+2,④四边形ACEB的面积是16.
正确的个数是 ( )
A.2个B.3个C.4个D.5个
7、(4分)反比例函数y=的图象经过点M(﹣3,2),则下列的点中在反比例函数的图象上为( )
A.(3,2)B.(2,3)C.(1,6)D.(3,﹣2)
8、(4分)下列等式一定成立的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
10、(4分)若,且,则的值是__________.
11、(4分)分解因式xy2+4xy+4x=_____.
12、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
13、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③.则三个结论中一定成立的是____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE,若BC=10cm,AB=8cm,求EF的长.
15、(8分)已知:、、是的三边,且满足:,面积等于______.
16、(8分)如图,正方形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.
求证:四边形OBEC是正方形.
17、(10分) “母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
18、(10分)某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如下表所示:
(得分说明:3分﹣﹣极佳,2分﹣﹣良好,1分﹣﹣尚可接受)
(1)技术员认为安全性能、省油效能、外观吸引力、内部配备这四项的占比分别为30%,30%,20%,20%,并由此计算得到A型汽车的综合得分为2.2,B型汽车的综合得分为_____;
(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B型汽车的综合得分.(说明:每一项的占比大于0,各项占比的和为100%)
答:安全性能:_____,省油效能:_____,外观吸引力:_____,内部配备:_____.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.
20、(4分)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为_____.
21、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
22、(4分)分解因式: =___________________.
23、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知直线经过点,交x轴于点A,y轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.
当时,求证:;
连接CD,若的面积为S,求出S与t的函数关系式;
在运动过程中,直线CF交x轴的负半轴于点G,是否为定值?若是,请求出这个定值;若不是,请说明理由.
25、(10分)某市自来水公司为了鼓励市民节约用水,采取分段收费标准. 若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,
(1)分别写出x≤5和x>5的函数解析式;
(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;
(3)若某户居民六月交水费31元,则用水多少吨?
26、(12分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.
(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;
(2)某人乘坐13km,应付多少钱?
(3)若某人付车费42元,出租车行驶了多少千米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
把B点的横坐标减2,纵坐标加1即为点B´的坐标.
【详解】
解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,
∴点B´的坐标是(−3,2).
故选:C.
本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
2、C
【解析】试题解析:设多边形有n条边,由题意得:
110°(n-2)=360°×3,
解得:n=1.
故选:C.
3、B
【解析】
根据平均数,中位数,众数的概念求解即可.
【详解】
45出现了三次是众数,
按从小到大的顺序排列得到第五,六个数分别为35,45,所以中位数为40;
由平均数的公式解得平均数为40;
所以40不但是平均数也是中位数.
故选:B.
考查平均数,中位数,众数的求解,掌握它们的概念是解题的关键.
4、A
【解析】
试题分析:先移项,再合并同类项,把x的系数化为1即可.
解:移项得,2x﹣x>2﹣1,
合并同类项得,x>1,
故选A
点评:本题考查的是在解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
5、C
【解析】
由矩形的性质和线段垂直平分线的性质证出OA=AB=OB,根据AE求出OE即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB,
∵AE=cm,
∴OE=2 cm,
∴OD=OB=2OE=4 cm;
故选:C.
此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
6、B
【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.
【详解】
①∵∠ACB=90°,DE⊥BC,
∴∠ACD=∠CDE=90°,
∴AC∥DE,
∵CE∥AD,
∴四边形ACED是平行四边形,
所以①正确;
②∵D是BC的中点,DE⊥BC,
∴EC=EB,
∴△BCE是等腰三角形,
所以②正确;
③∵AC=2,∠ADC=30°,
∴AD=4,CD=2,
∵四边形ACED是平行四边形,
∴CE=AD=4,
∵CE=EB,
∴EB=4,DB=2,
∴CB=4,
∴AB=,
∴四边形ACEB的周长是10+2;
所以③正确;
④四边形ACEB的面积: ×2×4+×4×2=8,
所以④错误,
故选:C.
考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法和等腰三角形的判定方法.
7、D
【解析】
根据题意得,k=xy=﹣3×2=﹣6,再将A,B,C,D四个选项中点的坐标代入得到k=﹣6的点在反比例函数的图象上.
【详解】
根据题意得,k=xy=﹣3×2=﹣6
∴将A(3,2)代入得到k=6,故不在反比例函数的图象上;
将B(2,3)代入得到k=6,故不在反比例函数的图象上;
将C(1,6)代入得到k=6,故不在反比例函数的图象上;
将D(3,-2)代入得到k=﹣6的点在反比例函数的图象上.
故选D.
本题考查了反比例函数图象上点的坐标特征,关键是运用xy=k解决问题.
8、A
【解析】
根据分式的基本性质逐一判断即可.
【详解】
解:约分正确,故A正确,符号处理错误,故B错误,根据分式的基本性质明显错误,故C错误,根据分式的基本性质也错误,故D错误.
故选:A.
本题考查的是分式的基本性质对约分的要求,掌握分式的基本性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,
∴a=-1.b=5,
∴a+b=-1+5=2.
点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).
10、-1
【解析】
根据平方差公式解答即可.
【详解】
∵x2-y2=(x+y)(x-y)=20,x+y=-2,
∴x-y=-1.
故答案为:-1.
本题考查了平方差公式,解题的关键是熟记平方差公式.
11、x(y+2)2
【解析】
原式先提取x,再利用完全平方公式分解即可。
【详解】
解:原式=,故答案为:x(y+2)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
12、
【解析】
根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.
【详解】
设
∵矩形纸片中,,
现将其沿对折,使得点C与点A重合,点D落在处,
∴ ,
在中,,
即 解得 ,
故答案为:.
本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.
13、①③
【解析】
由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于,,于是得到,故③正确.
【详解】
解:∵BF⊥AD,
∴∠AFB=90°,
∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,
∴∠AFB=∠FBC=90°,故①正确;
如下图所示,延长FE交BC的延长线于M,
又∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,∴∠DFE=∠M,
且CD与MF交于点E,两相交直线对顶角相等,∴∠DEF=∠CEM,
又∵BE平分∠ABC,∴∠ABE=∠EBC,
而平行四边形ABCD中,AB∥CD,平行线之间内错角相等,∴∠CEB=∠ABE,
∴∠ABE=∠EBC=∠CEB,故BCE为等腰三角形,其中BC=CE,
又∵AB=2AD,故CD=2BC=2CE,∴CE=DE,
在DFE与CME中,
,
∴DFE≌CME(AAS),
∴EF=EM=FM,
又∵∠FBM=90°,∴BE=FM,
∴EF=BE,
∵EF≠DE,故②错误;
又∵EF=EM,∴,
∵△DFE≌△CME,∴,
∴,故③正确,
故答案为:①③.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,本题需要添加辅助线,构造出全等三角形DFE≌CME,这是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、EF=5 cm.
【解析】
根据折叠的性质得到AF=AD,DE=EF,根据勾股定理计算即可.
【详解】
解:由折叠的性质可知,AF=AD=BC=10 cm,
在Rt△ABF中,BF===6(cm),
∴FC=BC﹣BF=10﹣6=4(cm)
设EF=x cm,则DE=EF=x,CE=8﹣x,
在Rt△CEF中,EF2=CE2+FC2,即x2=(8﹣x)2+42,
解得x=5,
即EF=5cm.
本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
15、1
【解析】
利用非负数的性质求出a,b,c的值,即可根据勾股定理的逆定理对于三角形形状进行判断,再根据三角形面积公式即可求解.
【详解】
证明:∵,
∴a−8=0,b−15=0,c−17=0,
∴a=8,b=15,c=17,
∵82+152=172,
∴三角形为直角三角形,
∴的面积为:8×15÷2=1.
故答案为1.
此题考查了勾股定理的逆定理,以及非负数的性质,三角形面积,得出△ABC是直角三角形是解本题的关键.
16、证明见解析
【解析】
分析:先根据两边分别平行的四边形是平行四边形得到四边形OBEC为平行四边形,然后根据正方形的性质:对角线互相垂直平分且相等,可得∠BOC=90°,OC=OB,从而根据正方形的判定得证结论.
详解:∵BE∥OC,CE∥OB,
∴四边形OBEC为平行四边形,
∵四边形ABCD为正方形,
∴OC=OB,AC⊥BD,
∴∠BOC=90°,
∴四边形OBEC是矩形.
∵OC=OB,
∴四边形OBEC是正方形.
点睛:此题主要考查了正方形的判定与性质,平行四边形的判定,熟练掌握正方形的性质是解决问题的关键.
17、30元
【解析】
试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.
解:设第一批盒装花的进价是x元/盒,则
2×=,
解得 x=30
经检验,x=30是原方程的根.
答:第一批盒装花每盒的进价是30元.
考点:分式方程的应用.
18、(1)2.1;(2)10%;10%;10%;50%
【解析】
(1)根据加权平均数的计算公式列式计算即可;
(2)要使得A型汽车的综合得分高于B型汽车的综合得分,根据这两款汽车的各项得分,将A型汽车高于B型汽车得分的项(内部配备)占比较高,同时将A型汽车低于B型汽车得分的项(省油效能)占比较低即可.
【详解】
(1)B型汽车的综合得分为:1×10%+2×10%+2×20%+2×20%=2.1.
故答案为2.1;
(2)∵A型汽车的综合得分高于B型汽车的综合得分,
∴各项的占比方式可以是:安全性能:10%,省油效能:10%,外观吸引力:10%,内部配备50%.
本题考查的是加权平均数的求法,掌握公式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据平行四边形的判定定理得到四边形HPFD、四边形PGCF是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、四边形PGCF是平行四边形,
∵S△APH=2,CG=2BG,
∴S△DPH=2S△APH=4,
∴平行四边形HPFD的面积=1,
∴平行四边形PGCF的面积=×平行四边形HPFD的面积=4,
∴S四边形PGCD=4+4=1,
故答案为1.
本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.
20、y=﹣x+1
【解析】
根据“上加下减”的平移规律可直接求得答案.
【详解】
解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.
故答案为:y=﹣x+1.
本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
21、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
22、
【解析】
先提取公因式2x后,再用平方差公式分解即可;
【详解】
解: ==;
故答案为:;
本题主要考查了提公因式法与公式法的综合应用,掌握提公因式法与公式法是解题的关键.
23、x>1
【解析】
利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.
【详解】
解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,
∴当y>0时,x﹣1>0,
解得x>1,
故答案为:x>1.
本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2);(3).
【解析】
(1)连接OF,根据“直线经过点”可得k=1,进而求出A(﹣4,0),B(0,4),得出△AOB是等腰直角三角形,得出∠CBF=45°,得出OF= AB=BF,OF⊥AB,得出∠OFD=∠BFC,证得△BCF≌△ODF,即可得出结论
(2)①根据全等三角形的性质可得出0<t<4时,BC=OD=t﹣4,再根据勾股定理得出CD2=2t2-8t+16,证得△FDC是等腰直角三角形,得出,即可得出结果;
②同理当t≥4时,得出BC=OD=t﹣4,由勾股定理得出CD2=OD2+OC2=2t2﹣8t+16,证出△FDC是等腰直角三角形,得出FC2CD2,即可得出结果;
(3)由待定系数法求出直线CF的解析式,当y=0时,可得出G,因此OG,求出即可.
【详解】
证明:连接OF,如图1所示:
直线经过点,
,解得:,
直线,
当时,;当时,;
,,
,
,
是等腰直角三角形,
,
为线段AB的中点,
,,,
,
,
,
,
在和中,,
≌,
;
解:当时,连接OF,如图2所示:
由题意得:,,
由得:≌,
,
,
,,
是等腰直角三角形,
,
的面积;
当时,连接OF,如图3所示:
由题意得:,,
由得:≌,
,
,
,,
是等腰直角三角形,
,
的面积;
综上所述,S与t的函数关系式为;
解:为定值;理由如下:
当时,如图4所示:
当设直线CF的解析式为,
,,F为线段AB的中点,
,
把点代入得:,
解得:,
直线CF的解析式为,
当时,,
,
,
;
当时,如图5所示:
同得:;
综上所述,为定值.
本题考查了一次函数的应用以及待定系数法求直线解析式、等腰直角三角形的性质、全等三角形的判定和性质等知识,灵活运用相关性质和判定结合一次函数的图像和性质进行解答是关键
25、 (1) (x≤5), (x>5);(2)见解析;(3)9吨.
【解析】
【分析】(1)用待定系数法可求解析式;(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.(3)把y=31代入(x>5)即可.
x>5自来水公司的收费标准是每吨4元;
【详解】解:(1)(x≤5), (x>5)
(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.
x>5自来水公司的收费标准是每吨4元;
(3)若某户居民六月交水费31元,设用水x吨,,解得:x=9(吨)
【点睛】本题考核知识点:一次函数的应用.解题关键点:结合一次函数的图象解决问题.
26、(1)当x≥3时,y与x之间的函数关系式是y=x+;(2)乘车13km应付车费21元;(3)出租车行驶了28千米.
【解析】
试题分析:(1)由于x≥3时,直线过点(3,8)、(8,15),设解析式为设y=kx+b,利用待定系数法即可确定解析式;
(2)把x=13代入解析式即可求得;
(3)将y=42代入到(1)中所求的解析式,即可求出x.
解:(1)当x≥3时,设解析式为设y=kx+b,
∵一次函数的图象过B(3,7)、C(8,14),
∴,
解得,
∴当x≥3时,y与x之间的函数关系式是y=x+;
(2)当x=13时,y=×13+=21,
答:乘车13km应付车费21元;
(3)将y=42代入y=x+,得42=x+,
解得x=28,
即出租车行驶了28千米.
题号
一
二
三
四
五
总分
得分
批阅人
汽车型号
安全性能
省油效能
外观吸引力
内部配备
A
3
1
2
3
B
3
2
2
2
2024年四川省成都市青羊区九上数学开学监测模拟试题【含答案】: 这是一份2024年四川省成都市青羊区九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省成都金牛区五校联考九上数学开学监测模拟试题【含答案】: 这是一份2024年四川省成都金牛区五校联考九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都市青羊区树德实验中学九上数学开学考试模拟试题【含答案】: 这是一份2024-2025学年四川省成都市青羊区树德实验中学九上数学开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。