安徽省合肥市庐阳区第四十二中学2024年数学九年级第一学期开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若点P(-1,3)在过原点的一条直线上,则这条直线所对应的函数解析式为( )
A.y=-3xB.y=x
C.y=3x-1D.y=1-3x
2、(4分)下列命题中是真命题的是( )
①4的平方根是2
②有两边和一角相等的两个三角形全等
③连结任意四边形各边中点的四边形是平行四边形
④所有的直角都相等
A.0个B.1个C.2个D.3个
3、(4分)要使分式有意义,则的取值应满足( )
A.B.C.D.
4、(4分)如图,在中,=55°,,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的度数为( )
A.B.C.D.
5、(4分)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )
A.68B.43C.42D.40
6、(4分)已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图像上,当x1<x2<0<x3时,y1、y2、y3的大小关系( )
A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1
7、(4分)当k>0,b<0时,函数y=kx+b的图象大致是( )
A.B.
C.D.
8、(4分)在如图所示的计算程序中,y与x之间的函数关系式所对应的图象是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在式子中,x的取值范围是__________________.
10、(4分)已知一次函数y=kx+b的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。
11、(4分)如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
12、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=_______.
13、(4分)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线,分别交AB、CD于点M、N.
(1)如图,求证:;
(2)如图,当点F为AE中点时,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证:;
(3)如图,在(2)的条件下,若,,求BM的长度.
15、(8分)如图,在▱ABCD中,AC为对角线,BF⊥AC,DE⊥AC,F、E为垂足,求证:BF=DE.
16、(8分)如图,在平行四边形中,,于点,试求的度数.
17、(10分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.
(1)求证:四边形AEFD是平行四边形;
(2)若∠DAB=120°,AB=12,AD=6,求△ABC的面积.
18、(10分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折
20、(4分)观察以下等式:
第1个等式:
第2个等式:=1
第3个等式:=1
第4个等式:=1
…
按照以下规律,写出你猜出的第n个等式:______(用含n的等式表示).
21、(4分)有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是 .
22、(4分)如图,直线 y=﹣2x+2 与 x 轴、y 轴分别交于 A、B 两点,把△AOB 绕点 A 顺时针旋转 90°后得 到△AO′B′,则直线 AB′的函数解析式是_____.
23、(4分)将一次函数y=5x﹣1的图象向上平移3个单位,所得直线不经过第_____象限.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于x的方程x1﹣(1k+1)x+k1﹣1=0有两个实数根x1,x1.
(1)求实数k的取值范围;
(1)若方程的两个实数根x1,x1满足,求k的值.
25、(10分)甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.
根据以上信息,整理分析数据如下:
(1)写出表格中的a、b、c的值;
(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.
26、(12分)如图,矩形的对角线交于点,点是矩形外的一点,其中.
(1)求证:四边形是菱形;
(2)若,连接交于于点,连接,求证:平分.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
设这条过原点的直线的解析式为:y=kx,
∵该直线过点P(-1,3),
∴-k=3,即k=-3,
∴这条直线的解析式为:y=-3x.
故选A.
2、C
【解析】
根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.
【详解】
解:4的平方根是±2,①是假命题;
有两边及其夹角相等的两个三角形全等,②是假命题;
连结任意四边形各边中点的四边形是平行四边形,③是真命题;
所有的直角都相等,④是真命题.
故选C.
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
3、C
【解析】
根据分式的分母不为0即可求解.
【详解】
依题意得x-1≠0,
∴
故选C.
此题主要考查分式的有意义的条件,解题的关键是熟知分母不为零.
4、A
【解析】
根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.
【详解】
在△ABC中,∵∠B=55°,∠C=30°,
∴∠BAC=180°−∠B−∠C=95°,
由作图可知MN为AC的中垂线,
∴DA=DC,
∴∠DAC=∠C=30°,
∴∠BAD=∠BAC−∠DAC=65°,
故选:A.
此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.
5、D
【解析】
把这组数据按从小到大的顺序排列,然后按照中位数的定义求解.
【详解】
解:这组数据按从小到大的顺序排列为:35,36,38,1,42,42,68,
则中位数为:1.
故选D.
本题考查了中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
6、C
【解析】
在反比例函数的图象在二四象限,根据x1<x2<0<x3,可以确定点(x1,y1)、(x2,y2)、(x3,y3)所在象限,根据反比例函数的图象和性质,可以确定y1、y2、y3的大小关系.
【详解】
∵反比例函数的图象在二、四象限,在每个象限内y随x的增大而增大,
又∵x1<x2<0<x3,
∴点,和,在第二象限、而,在第四象限,
于是有:0<<,而<0,
因此,<<,
故选:C.
本题考查了反比例函数的性质,反比例函数图象上点的坐标特点,先根据题意判断出函数图象在二、四象限是解答此题的关键.
7、D
【解析】
由一次函数图象与系数的关系可得,
当k>0,b<0时,函数y=kx+b的图象经过一三四象限.
故选D.
8、A
【解析】
根据程序得到函数关系式,即可判断图像.
【详解】
解:根据程序框图可得y=﹣x×2+3=﹣2x+3,
y=2x+3的图象与y轴的交点为(0,3),与x轴的交点为(1.5,0).
故选:A.
此题主要考查一次函数的图像,解题的关键是根据程序得到函数解析式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥2
【解析】
分析:根据被开方式是非负数列不等式求解即可.
详解:由题意得,
x-2≥0,
x≥2.
故答案为:x≥2.
点睛: 本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
10、y=2x+2
【解析】
根据一次函数解析式y=kx+b,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k和b的值,即得到解析式.
【详解】
因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b,所以0=-x+b,2=b,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.
本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.
11、2
【解析】
如图,过A点作AE⊥y轴,垂足为E,
∵点A在双曲线上,∴四边形AEOD的面积为1
∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3
∴四边形ABCD为矩形,则它的面积为3-1=2
12、
【解析】
试题分析:根据菱形性质得出AC⊥BD,AO=OC=12,BO=BD=5,根据勾股定理求出AB,根据菱形的面积得出S菱形ABCD=×AC×BD=AB×DE,代入求出即可.
【详解】
∵四边形ABCD是菱形,AC=24,BD=10,
∴AC⊥BD,AO=OC=AC=12,BO=BD=5,
在Rt△AOB中,由勾股定理得:AB=13,
∵S菱形ABCD=×AC×BD=AB×DE,
∴×24×10=13DE,
∴DE=,
故答案为.
本题考查的是菱形的性质及等面积法,掌握菱形的性质,灵活运用等面积法是解题的关键.
13、4.8
【解析】
【分析】连接AP,由题意知四边形AFPE是矩形,由矩形的性质知EF=AP,所以当AP最小时,EF最小,根据垂线段最短进行解答即可.
【详解】如图,连接AP,
由题意知,四边形AFPE是矩形,则有AP=EF,
当EF取最小值时,则AP也取最小值,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AP有最小值,此时EF有最小值,
由勾股定理知BC==10,
∵S△ABC=AB•AC=BC•AP,
∴AP=4.8,
即EF的最小值是4.8,
故答案为:4.8.
【点睛】本题考查了矩形的判定与性质、勾股定理、垂线段最短等,正确分析是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析;(3).
【解析】
(1)由正方形的性质得出∠B=90°,得出∠BAE+∠AEB=90°,由垂直的性质得出∠BAE+∠AMN=90°,即可得出结论;
(2)连接AG、EG、CG,证明△ABG≌△CBG得出AG=CG,∠GAB=∠GCB,证出EG=CG,由等腰三角形的性质得出∠GEC=∠GCE,证出∠AGE=90°,由直角三角形斜边上的中线性质得出BF=AE,FG=AE,即可得出结论;
(3)过G作交AD于点P,交BC于点Q,证明DP=PG=2,连接ME,证明MN是AE的垂直平分线,得,,再证明得,得,进而得,中,由勾股定理得,代入相关数据,从而得出结论.
【详解】
(1)(1)证明:∵四边形ABCD是正方形,
∴∠B=90°,
∴∠BAE+∠AEB=90°,
∵MN⊥AE于F,
∴∠BAE+∠AMN=90°,
∴∠AEB=∠AMN;
(2)证明:连接AG、EG、CG,
∵四边形ABCD是正方形,
∴AB=BC,∠ABG=∠CBG=45°,∠ABE=90°,
在△ABG和△CBG中,
,
∴△ABG≌△CBG(SAS),
∴AG=CG,∠GAB=∠GCB,
∵MN⊥AE于F,F为AE中点,
∴AG=EG,
∴EG=CG,
∴∠GEC=∠GCE,
∴∠GAB=∠GEC,
∵∠GEB+∠GEC=180°,
∴∠GEB+∠GAB=180°,
∵四边形ABEG的内角和为360°,∠ABE=90°,
∴∠AGE=90°,
在Rt△ABE 和Rt△AGE中,AE为斜边,F为AE的中点,
∴BF=AE,FG=AE,
∴BF=FG;
(3)过G作交AD于点P,交BC于点Q,则 ,,
中,, ,
∴ ,
∴
∵,
∴ ,
∴ 即
连接ME ∵于F,F为AE的中点,
∴MN是AE的垂直平分线
∴,
由(2)知 ,,
∴,
又,
∴,
∴ ,
∴ ,
又,
∴
∴
∴
∵
∴四边形PDCQ为矩形
∴
设
∵E是BC中点
∴
∴
∴ 即
∴
∴
设
∴
中,由勾股定理得
∴ 解得
∴
本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质、勾股定理等知识;本题综合性强,有一定难度.
15、证明见解析
【解析】
由平行四边形的性质可知AD=BC,∠DAE=∠BCF,由垂直的定义可知∠DEA=∠BFC=90°,由全等三角形的判定方法可知△AED≌△CFB,进而得到BF=DE.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC,∠DAE=∠BCF,
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEA=∠BFC=90°.
在△AED和△BFC中,
,
∴△AED≌△CFB,
∴BF=DE.
本题考查了平行四边形的性质,以及全等三角形的性质与判定,是中考常见的题目.
16、.
【解析】
由BD=CD可得∠DBC=∠C=70°,由平行四边形的性质可得AD∥BC,从而有∠ADB=∠DBC=70°,继而在直角△AED中,根据直角三角形两锐角互余即可求得答案.
【详解】
,
,
在中,,
,
于点,
,
.
本题考查了平行四边形的性质,等边对等角,直角三角形两锐角互余等知,熟练掌握相关知识是解题的关键.
17、(1)见解析;(2)S△ABC=18.
【解析】
(1)易知AE=AB,DF=CD,即可得到AE=DF,又有AB∥CD,所以四边形AEFD是平行四边形;(2)作CH⊥AB于H.利用平行四边形性质求出∠B,再利用三角函数求出CH,接着利用三角形面积公式求解即可
【详解】
(1)证明:如图.
∵四边形ABCD是平行四边形,
∴AB∥CD且AB=CD,
∵点E,F分别是AB,CD的中点,
∴AE=AB,DF=CD.
∴AE=DF,
∴四边形AEFD是平行四边形;
(2)如图,作CH⊥AB于H.
∵四边形ABCD是平行四边形,
∴AD=BC=6,AD∥BC,
∴∠B=180°﹣∠DAB=60°,
∴CH=BC•sin60°=3,
∴S△ABC=•AB•CH=×12×3=18
本题主要考查平行四边形的证明与性质,三角函数的简单应用,三角形面积计算等知识点,本题第二问关键在于能够做出辅助线同时利用三角函数求出高
18、见解析
【解析】
根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.
【详解】
证明:连接BD,
∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,
∴DM=DN,
∵DE垂直平分线BC,
∴DB=DC,
在Rt△DMB和Rt△DNC中,
∴Rt△DMB≌Rt△DNC(HL),
∴BM=CN.
本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、八.
【解析】
设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.
【详解】
解:设打了x折,
由题意得360×0.1x-240≥240×20%,
解得:x≥1.
则要保持利润不低于20%,至多打1折.
故答案为:八.
本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.
20、++×=1
【解析】
观察前四个等式可得出第n个等式的前两项为及,对比前四个等式即可写出第n个等式,此题得解.
【详解】
解:观察前四个等式,可得出:第n个等式的前两项为及,
∴第n个等式为
故答案为:++×=1
本题考查规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.
21、1
【解析】
试题分析:先由平均数计算出a=4×5-1-3-5-6=4,再计算方差(一般地设n个数据,x1,x1,…xn的平均数为,=(),则方差=[]),=[]=1.
考点:平均数,方差
22、y=0.5x−0.5
【解析】
令x=0,求得点B的坐标,令y=0,求得点A的坐标,由旋转的性质可知:AO′=AO,O′B′=OB,从而可求得点B′的坐标.
【详解】
令x=0得y=2,则OB=2,令y=0得,x=1,则OA=1,
由旋转的性质可知:O′A=1,O′B′=2.
则点B′(3,1).
设直线AB′的函数解析式为y=kx+b,
把(1,0)(3,1)代入解析式,可得 ,
解得: ,
所以解析式为:y=0.5x−0.5;
此题考查一次函数图象与几何变换,解题关键在于求出A,B的坐标.
23、四
【解析】
根据一次函数图象的平移规律,可得答案.
【详解】
将一次函数y=5x﹣1的图象向上平移3个单位,得
y=5x+2,
直线y=5x+2经过一、二、三象限,不经过第四象限,
故答案为:四。
此题考查一次函数图象与几何变换,解题关键在于利用一次函数图象平移的性质
二、解答题(本大题共3个小题,共30分)
24、(1);(1)
【解析】
(1)根据判别式的意义可得△=,解不等式即可求出实数k的取值范围;(1)利用根与系数的关系将两根之和和两根之积代入代数式求k的值即可.
本题解析:
【详解】
解:(1)由题意得:△≥0
∴
∴
(1)由题意得:
由得:
∴
∴ 或
∵ ∴
点睛:本题考查了一元二次方程的根的判别式当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了根与系数的关系.
25、(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定
【解析】
(1)利用加权平均数的计算公式、中位数、众数的概念解答;
(2)利用方差的计算公式求出S甲2,根据方差的性质判断即可.
【详解】
解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;
(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,
则S甲2<S乙2,
∴甲队员的射击成绩较稳定.
故答案为(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定.
本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.
26、(1)见解析;(2)见解析.
【解析】
(1)由矩形可知OA=OB,由AE∥BD,BE∥AC,即可得出结论;
(2)利用矩形和菱形的性质先证△COF≌△EBF,得到OF=BF,再求得∠AOB=60°,利用有一个角是60°的等腰三角形是等边三角形,得到△AOB为等边三角形,最后利用三线合一的性质得到AF平分∠BAO.
【详解】
证明:(1)∵四边形是矩形,
∴则,
即∴
又∵,
∴四边形是平行四边形,
∴四边形是菱形;
(2)∵四边形是菱形,
∴,
∴,
∵四边形是矩形,
∴,
∴,
在和中
∴,
∴,
∵,
∴,
∴,
∵,
∴是等边三角形,
∵,
∴平分.
本题考查了矩形的性质,菱形的判定与性质,等边三角形的判定,三线合一的性质.
题号
一
二
三
四
五
总分
得分
批阅人
队员
平均/环
中位数/环
众数/环
甲
7
b
7
乙
a
7.5
c
安徽省合肥市四十五中学2024年九年级数学第一学期开学学业水平测试试题【含答案】: 这是一份安徽省合肥市四十五中学2024年九年级数学第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024年安徽省合肥市庐阳区数学九上开学监测试题【含答案】: 这是一份2024年安徽省合肥市庐阳区数学九上开学监测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省合肥市庐阳区九上数学开学监测试题【含答案】: 这是一份2024年安徽省合肥市庐阳区九上数学开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

