2025届山东省枣庄市薛城区奚仲中学数学九上开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,下列结论中错误的是( )
A.∠1=∠2B.∠BAD=∠BCDC.AO=COD.AC⊥BD
2、(4分)如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于( )
A.B.C.D.
3、(4分)如图是由四个全等的直角三角形拼接而成的图形,其中,,则的长是( )
A.7B.8C.D.
4、(4分)若一个多边形的内角和小于其外角和,则这个多边形的边数是( )
A.3B.4C.5D.6
5、(4分)下列调查中,适合采用普查的是()
A.了解一批电视机的使用寿命
B.了解全省学生的家庭1周内丢弃塑料袋的数量
C.了解某校八(2)班学生的身高
D.了解淮安市中学生的近视率
6、(4分)下列多项式中能用完全平方公式分解的是
A.B.C.D.
7、(4分)在某学校汉字听写大赛中,有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )
A.中位数B.平均数C.众数D.方差
8、(4分)下列四个多项式中,不能因式分解的是( )
A.a2+aB.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△MBN 中,已知:BM=6,BN=7,MN=10,点 A C,D 分别是 MB,NB,MN 的中点,则四边形 ABCD 的周长 是_____.
10、(4分)如图,点E是正方形ABCD边AD的中点,连接CE,过点A作AF⊥CE交CE的延长线于点F,过点D作DG⊥CF交CE于点G,已知AD=2,则线段AF的长是_____.
11、(4分)在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是___kg.
12、(4分)的倒数是_____.
13、(4分)如图,在平行四边形中,度,,,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:;
(2)解方程:.
15、(8分)(1)解不等式组
(2)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值。
16、(8分)先化简,再求值,其中
17、(10分)某市自来水公司为了鼓励市民节约用水,采取分段收费标准. 若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,
(1)分别写出x≤5和x>5的函数解析式;
(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;
(3)若某户居民六月交水费31元,则用水多少吨?
18、(10分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF
(1)求证:四边形EDFG是正方形;
(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若是关于的一元二次方程的一个根,则____.
20、(4分)一次函数y=kx+b的图象与函数y=2x+1的图象平行,且它经过点(﹣1,1),则此次函数解析式为_____.
21、(4分)命题“等腰三角形两底角相等”的逆命题是_______
22、(4分)已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:
由此可知,汽车行驶了__________小时, 油箱中的剩余油量为升.
23、(4分)如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是_____(只需添加一个即可)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,是上的中线,的垂直平分线交于点,连接并延长交于点,,垂足为.
(1)求证:;
(2)若,,求的长;
(3)如图,在中,,,是上的一点,且,若,请你直接写出的长.
25、(10分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON;
(2)若正方形ABCD的边长为6,OE=EM,求MN的长.
26、(12分)如图,直线交x轴于点A,y轴于点B.
(1)求线段AB的长和∠ABO的度数;
(2)过点A作直线L交y轴负半轴于点C,且△ABC的面积为,求直线L的解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据平行四边形的对边平行和平行线的性质可对A进行判断;根据平行四边形的对角相等可对B进行判断;根据平行四边形的对边相等可对A进行判断;根据平行四边形的对角线互相平分可对D进行判断.
【详解】
A、在▱ABCD中,∵AB∥CD,∴∠1=∠2,所以A选项结论正确;
B、在▱ABCD中,∠BAD=∠BCD,所以B选项结论正确;
C、在▱ABCD中,AO=CO,所以C选项的结论正确;
D、在▱ABCD中,OA=OC,OB=OD,所以D选项结论错误.
故选D.
本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.
2、A
【解析】
试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.
试题解析:∵四边形MBND是菱形,
∴MD=MB.
∵四边形ABCD是矩形,
∴∠A=90°.
设AB=a,AM=b,则MB=2a-b,(a、b均为正数).
在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,
解得a=,
∴MD=MB=2a-b=,
∴.
故选A.
考点:1.矩形的性质;2.勾股定理;3.菱形的性质.
3、C
【解析】
由图易知EG与FG的长,然后根据勾股定理即可求出EF的长.
【详解】
解:如图,由题意可知:AE=BG=FC=5,BE=CG=12,
∴EG=BE-BG=12-5=7,FG=CG-FC=12-5=7,
∴在Rt△EGF中,EF==7.
故选C.
本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
4、A
【解析】
试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,
∴这个多边形是四边形.
故选B.
考点:多边形内角与外角.
5、C
【解析】
根据普查的选择方法即可判断.
【详解】
A. 了解一批电视机的使用寿命,适合采用抽样调查;
B. 了解全省学生的家庭1周内丢弃塑料袋的数量,适合采用抽样调查;
C. 了解某校八(2)班学生的身高,适合采用普查
D. 了解淮安市中学生的近视率,适合采用抽样调查;
故选C.
此题主要考查统计调查的分式,解题的关键是熟知普查的适用范围.
6、B
【解析】
根据完全平方公式的结构特征判断即可.
【详解】
选项A、C、D都不能够用完全平方公式分解,选项B能用完全平方公式分解,即.
故选B.
本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
7、A
【解析】
可知一共有21名同学参赛,要取前10名,因此只需知道这组数据的中位数即可.
【详解】
解:∵ 有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,
∴小颖是否能进入决赛,将21名同学的成绩从小到大排列,可知第11名同学的成绩是这组数据的中位数,
∴小颖要知道这组数据的中位数,就可知道自己是否进入决赛.
故答案为:A
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
8、C
【解析】
逐项分解判断,即可得到答案.
【详解】
解:A选项a2+a=a(a+1);
B选项=(m+n)(m-n);
C选项. 不能因式分解;
D选项. =(a+3)2.
故选C
本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、13
【解析】
根据中位线性质可以推出CD∥AB,AD∥BC,可得四边形ABCD为平行四边形,由中点可得四边形ABCD的周长
【详解】
∵点A,C,D分别是MB,NB,MN的中点,
∴CD∥AB,AD∥BC,
∴四边形ABCD为平行四边形,
∴AB=CD,AD=BC.
∵BM=6,BN=7,点A,C分别是MB,NB的中点,
∴AB=3,BC=3.5,
∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.
故答案为13
本题考查了中位线的性质,以及平行四边形的判定及性质,掌握中位线的性质及平行四边形的性质是解题的关键.
10、1
【解析】
先利用正方形的性质得到∠ADC=90°,CD=AD=1 ,再利用E点为AD的中点得到AE=DE=,则利用勾股定理可计算出CE=5,然后证明Rt△AEF∽Rt△CED,从而利用相似比可计算出AF的长.
【详解】
∵四边形ABCD为正方形,
∴∠ADC=90°,CD=AD=1,
∵点E是正方形ABCD边AD的中点,
∴AE=DE= ,
在Rt△CDE中,
∵AF⊥CE,
∴∠F=90°,
∵∠AEF=∠CED,
∴Rt△AEF∽Rt△CED,
∴,即
∴AF=1.
故答案为1.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质.
11、1.
【解析】
可设小林的体重是xkg,根据平均数公式列出方程计算即可求解.
【详解】
解:设小林的体重是xkg,依题意有
x+2(x+6)=42×3,
解得x=1.
故小林的体重是1kg.
故答案为:1.
考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
12、
【解析】
分析:根据倒数的意义或二次根式的化简进行计算即可.
详解:因为×=1
所以的倒数为.
故答案为.
分析:此题主要考查了求一个数的倒数,关键是明确倒数的意义,乘积为1的两数互为倒数.
13、
【解析】
依据平行四边形的对角互相平分可得AO=3cm,在Rt△ABO中利用勾股定理可求AB长.
【详解】
∵四边形ABCD是平行四边形,
∴AO=AC=3cm.
在Rt△ABO中,OB=6cm,AO=3cm,
利用勾股定可得AB=.
故答案为3.
本题主要考查了平行四边形的性质、勾股定理,利用平行四边形的对角线互相平分求解三角形中某些线段的长度是解决这类问题通常的方法.
三、解答题(本大题共5个小题,共48分)
14、 (1)-2;(2) 无解
【解析】
(1)原式利用零指数幂、负整数指数幂法则,平方根及立方根定义计算即可求出值;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:(1)原式;
(2)方程两边同时乘以,得:,
解得:,
检验:把代入得:,
则是增根,原分式方程无解.
此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.
15、(1)﹣2<x≤1(2)见解析
【解析】
(1)通过计算得出不等式组中1-3(x-1)<8-x的解集为x>﹣2,—+3≥x+1的解集为x≤1,得出不等式组的解集为﹣2<x≤1.
(2)先化简得出结果,要想式分式有意义,则分式的分母不能为0,即x≠0、1、3.则x只能取0,1,2,3中的2,将2带入结果中即可得出最终结果.
【详解】
(1) 由1-3(x-1)<8-x得:
1-3x+3<8-x,
1+3-8<-x+3x,
﹣4<2x,
则x>﹣2.
由+3≥x+1得:
x-3+6≥2x+2
﹣3+6-2≥2x-x
则x≤1
所以不等式组的解集为﹣2<x≤1.
(2)÷-
=× -
=× -
=+
=+
=2
要想使分式有意义,必须使分式的分母不能为0,
除法中除数不能为0,
即+3≠0、()≠0、a-3≠0、a-1≠0,
故a≠0、-3、1、3.
所以a只能取0、1、2、3中的2,
将2代入化简结果2a得:
2a=2×2,
=4.
本题主要考查解不等式组以及分式的化简求值.易错点在于第(2)问的化简求值,往往忽略了分式有意义的条件.
16、
【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
【详解】
解:原式
当时,
原式
本题考查了分式的化简求值,熟练掌握分式混合运算的顺序以及运算法则是解题的关键.
17、 (1) (x≤5), (x>5);(2)见解析;(3)9吨.
【解析】
【分析】(1)用待定系数法可求解析式;(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.(3)把y=31代入(x>5)即可.
x>5自来水公司的收费标准是每吨4元;
【详解】解:(1)(x≤5), (x>5)
(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.
x>5自来水公司的收费标准是每吨4元;
(3)若某户居民六月交水费31元,设用水x吨,,解得:x=9(吨)
【点睛】本题考核知识点:一次函数的应用.解题关键点:结合一次函数的图象解决问题.
18、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
【解析】
(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;
(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.
【详解】
(1)证明:连接CD,如图1所示.
∵为等腰直角三角形,,
D是AB的中点,
∴
在和中,
∴ ,
∴,
∵,
∴,
∴为等腰直角三角形.
∵O为EF的中点,,
∴,且,
∴四边形EDFG是正方形;
(2)解:过点D作于E′,如图2所示.
∵为等腰直角三角形,,
∴,点E′为AC的中点,
∴ (点E与点E′重合时取等号).
∴
∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GD⊥EF且GD=EF;(2)根据正方形的面积公式找出4≤S四边形EDFG<1.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0
【解析】
根据一元二次方程的解即可计算求解.
【详解】
把x=-2代入方程得,解得k=1或0,
∵k2-1≠0,k≠±1,
∴k=0
此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.
20、y=2x+3
【解析】
根据图象平行可得出k=2,再将(-1,1)代入可得出函数解析式.
【详解】
∵函数y=kx+b的图象平行于直线y=2x+1,
∴k=2,
将(-1,1)代入y=2x+b得:1=-2+b,
解得:b=3,
∴函数解析式为:y=2x+3,
故答案为:y=2x+3.
本题考查了待定系数法求一次函数解析式,关键是掌握两直线平行则k值相同.
21、有两个角相等的三角形是等腰三角形
【解析】
根据逆命题的条件和结论分别是原命题的结论和条件写出即可.
【详解】
∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.
故答案为:有两个角相等的三角形是等腰三角形.
本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.
22、11.5
【解析】
根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.
【详解】
根据题意得每小时的用油量为,
∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,
当y=8时,x=11.5.
故答案为:11.5.
此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.
23、∠ABC=90°或AC=BD.
【解析】
试题分析:此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.
解:条件为∠ABC=90°,
理由是:∵平行四边形ABCD的对角线互相垂直,
∴四边形ABCD是菱形,
∵∠ABC=90°,
∴四边形ABCD是正方形,
故答案为∠ABC=90°.
点睛:本题主要考查正方形的判定.熟练运用正方形判定定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析 (2) (3)
【解析】
(1)根据题意利用中线的性质和垂直平分线的性质,即可解答.
(2)根据题意和由(1)得到,再利用勾股定理得到,最后利用全等三角形的性质,即可解答.
(3)作于,于,可得,设,则,利用勾股定理即可解答.
【详解】
(1)证明:
∵,AD是上的中线,
∴.
又∵,
∴.
∵是的垂直平分线,
∴.
∴.
又∵,
∴.
(2)解:∵,是上的中线,,
∴.
由(1)知,,
∴.
∵,
∴.
∴.
由,及勾股定理,可得,
∵,
∴.
所以,.
(3).
解:如图,
作于,于,仿(1)可得,
且
∴
设,则,在中,
,得,(负值已舍).
∴.
此题考查垂直平分线的性质,全等三角形的判定与性质,勾股定理,解题关键在于作辅助线.
25、(1)见解析;(2)MN.
【解析】
(1)证△OAM≌△OBN即可得;
(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=,由勾股定理即可求出MN的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
(2)如图,过点O作OH⊥AD于点H,
∵正方形的边长为6,
∴OH=HA=3,
∵E为OM的中点,
∴HM=6,
则OM=,
∴MN=.
本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.
26、(1)4,;(1).
【解析】
(1)先分别求出点A、B的坐标,则可求出OA、OB的长,利用直角三角形的性质即可解答;
(1)根据三角形面积公式求出BC,进而求得点C坐标,利用待定系数法求解即可.
【详解】
解:(1)当x=0时,y=,
∴B(0,),即OB=,
当y=0时,,解得x=1.
∴A(1,0),即OA=1 ,
在直角三角形ABO中,
∴AB===4,
∴ 直角三角形ABO中,OA=AB;
∴∠ABO=30˚;
(1)∵ △ABC的面积为,
∴ ×BC×AO=
∴ ×BC×1=,即BC=
∵ BO=
∴ CO=﹣=2
∴ C(0,﹣2)
设L的解析式为y=kx+b,则
,
解得
,
∴ L的解析式为y=﹣2.
本题考查了一次函数的图象与性质、含30º角的直角三角形、勾股定理、三角形面积公式,熟练掌握一次函数的图象与性质,会利用待定系数法求函数解析式是解答的关键.
题号
一
二
三
四
五
总分
得分
(小时)
…
(升)
…
2023-2024学年山东省枣庄市薛城区奚仲中学数学九年级第一学期期末经典模拟试题含答案: 这是一份2023-2024学年山东省枣庄市薛城区奚仲中学数学九年级第一学期期末经典模拟试题含答案,共8页。
山东省枣庄市薛城区奚仲中学2023-2024学年数学八上期末质量检测试题含答案: 这是一份山东省枣庄市薛城区奚仲中学2023-2024学年数学八上期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,的三边长分别为,下列条件等内容,欢迎下载使用。
山东省枣庄市薛城区奚仲中学2022-2023学年数学七下期末预测试题含答案: 这是一份山东省枣庄市薛城区奚仲中学2022-2023学年数学七下期末预测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,如图,,,,则的度数为,在Rt△ABC中,∠C=90°,下列各式是最简二次根式的是等内容,欢迎下载使用。