2023-2024学年山东省枣庄市薛城区奚仲中学数学九年级第一学期期末经典模拟试题含答案
展开
这是一份2023-2024学年山东省枣庄市薛城区奚仲中学数学九年级第一学期期末经典模拟试题含答案,共8页。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.由于受猪瘟的影响,今年9 月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23 元,连续两次上涨后,售价上升到每千克40 元,则下列方程中正确的是( )
A.B.
C.D.
2.下列各点中,在函数y=-图象上的是( )
A.(﹣2,4)B.(2,4)C.(﹣2,﹣4)D.(8,1)
3.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( )
A.B.C.D.
4.在平面直角坐标系中,二次函数与坐标轴交点个数( )
A.3个B.2个C.1个D.0个
5.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为( )
A.9B.12π﹣9C.D.6π﹣
6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是
A.55°B.60°C.65°D.70°
7.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( ).
A.B.C.D.
8.若关于x的一元二次方程有两个不相等的实数根,则m的值可能是( )
A.3B.2C.1D.0
9.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是
A.B.C.D.
10.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A.①②③④B.①④C.②③④D.①②③
11.一个圆柱和一个正方体按如图所示放置,则其俯视图为( )
A.B.
C.D.
12.已知关于x的一元二次方程 x ax b 0 a b 的两个根为 x1、x2,x1 x2则实数 a、b、x1、x2的大小关系为( )
A.a x1 b x2B.a x1 x2 bC.x1 a x2 bD.x1 a b x2
二、填空题(每题4分,共24分)
13.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.
14.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为_____
15.若是方程的一个根.则的值是________.
16.如图,在中,,,点为边上一点,作于点,若,,则的值为____.
17.若点在反比例函数的图象上,则的大小关系是_____________.
18.分解因式: .
三、解答题(共78分)
19.(8分)如图,二次函数的图象与一次函数的图象交于点及点
(1)求二次函数的解析式及的坐标
(2)根据图象,直按写出满足的的取值范围
20.(8分)已知:如图,将△ADE绕点A顺时针旋转得到△ABC,点E对应点C恰在D的延长线上,若BC∥AE.求证:△ABD为等边三角形.
21.(8分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
22.(10分)如图,在钝角中,点为上的一个动点,连接,将射线绕点逆时针旋转,交线段于点. 已知∠C=30°,CA=2 cm,BC=7cm,设B,P两点间的距离为xcm,A,D两点间的距离ycm.
小牧根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小牧探究的过程,请补充完整:
(1)根据图形.可以判断此函数自变量X的取值范围是 ;
(2)通过取点、画图、测量,得到了与的几组值,如下表:
通过测量。可以得到a的值为 ;
(3)在平而直角坐标系xOy中.描出上表中以各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当AD=3.5cm时,BP的长度约为 cm.
23.(10分)如图,在中,,且点的坐标为
(1)画出绕点逆时针旋转后的.
(2)求点旋转到点所经过的路线长(结果保留)
(3)画出关于原点对称的
24.(10分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.
(1)求∠CAD的度数;
(2)若⊙O的半径为4,求弧BC的长.
25.(12分)已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F
(1)如图1,求证:BD平分∠ADF;
(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;
(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=1.求sin∠ADB的值.
26.(12分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.
(1)求该抛物线的解析式;
(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;
(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、B
5、A
6、C
7、C
8、D
9、A
10、D
11、D
12、D
二、填空题(每题4分,共24分)
13、
14、1
15、
16、
17、y1>y3>y1
18、.
三、解答题(共78分)
19、(1)或,点B的坐标为(4,3);(2)当时,kx+b≥(x-2)2+m
20、证明见解析.
21、20米
22、(1)0≤x ≤5;(2)1.74;(3)见解析;(4)0.8或者4.8.
23、(1)见解析;(2);(2)见解析
24、(1)∠CAD=35°;(2).
25、(1)证明见解析;(2)证明见解析;(3)sin∠ADB的值为.
26、(1)y=x2﹣x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析.
0.51
1.02
1.91
3.47
3
4.16
4.47
3.97
3.22
2.42
1.66
a
2.02
2.50
相关试卷
这是一份2023-2024学年山东省枣庄市薛城区数学九年级第一学期期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标为,下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份山东省枣庄市薛城区奚仲中学2023-2024学年数学八上期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,的三边长分别为,下列条件等内容,欢迎下载使用。
这是一份山东省枣庄市薛城区奚仲中学2022-2023学年数学七下期末预测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,如图,,,,则的度数为,在Rt△ABC中,∠C=90°,下列各式是最简二次根式的是等内容,欢迎下载使用。