终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】

    立即下载
    加入资料篮
    2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】第1页
    2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】第2页
    2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】

    展开

    这是一份2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)函数y=中自变量x的取值范围为( )
    A.x≥0B.x≥﹣2C.x≥2D.x≤﹣2
    2、(4分)如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了( )
    A.24mB.32mC.40mD.48m
    3、(4分)如图,已知点A(1,0),点B(b,0)(b>1),点P是第一象限内的动点,且点P的纵坐标为,若△POA和△PAB相似,则符合条件的P点个数是( )
    A.0B.1C.2D.3
    4、(4分)如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是( )
    A.平行四边形→菱形→平行四边形→矩形→平行四边形
    B.平行四边形→矩形→平行四边形→菱形→平行四边形
    C.平行四边形→矩形→平行四边形→正方形→平行四边形
    D.平行四边形→矩形→菱形→正方形→平行四边形
    5、(4分)把分式,, 进行通分,它们的最简公分母是( )
    A.x﹣yB.x+yC.x2﹣y2D.(x+y)(x﹣y)(x2﹣y2)
    6、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为( )
    A.(1,2)B.(4,2)C.(2,4)D.(2,1)
    7、(4分)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为
    A.1 B.2 C.3 D.4
    8、(4分)如图,点O是AC的中点,将面积为4cm2的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则图中阴影部分的面积是( )
    A.1cm2B.2cm2C.3cm2D.4cm2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点和都在第三象限的角平分线上,则_______.
    10、(4分)已知菱形的两条对角线长分别为4和9,则菱形的面积为_____.
    11、(4分)如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数等于___________.
    12、(4分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数的图象上,则点C的坐标为__.
    13、(4分)方程=3的解是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)操作思考:如图1,在平面直角坐标系中,等腰直角的直角顶点在原点,将其绕着点旋转,若顶点恰好落在点处.则①的长为______;②点的坐标为______(直接写结果)
    (2)感悟应用:如图2,在平面直角坐标系中,将等腰直角如图放置,直角顶点,点,试求直线的函数表达式.
    (3)拓展研究:如图3,在直角坐标系中,点,过点作轴,垂足为点,作轴,垂足为点是线段上的一个动点,点是直线上一动点.问是否存在以点为直角顶点的等腰直角,若存在,请直接写出此时点的坐标,若不存在,请说明理由.
    15、(8分)(1)分解因式:a2﹣1+b2﹣2ab
    (2)解方程:=+
    16、(8分)某学校为了了解男生的体能情况,规定参加测试的每名男生从“实心球”,“立定跳远”,“引体向上”,“耐久跑1000米”四个项目中随机抽取一项作为测试项目.
    (1)八年(1)班的25名男生积极参加,参加各项测试项目的统计结果如图,参加“实心球”测试的男生人数是 人;
    (2)八年(1)班有8名男生参加了“立定跳远”的测试,他们的成绩(单位:分)如下:95,100,82,90,89,90,90,85
    ①“95,100,82,90,89,90,90,85”这组数据的众数是 ,中位数是 .
    ②小聪同学的成绩是92分,他的成绩如何?
    ③如果将不低于90分的成绩评为优秀,请你估计八年级80名男生中“立定跳远”成绩为优秀的学生约为多少人?
    17、(10分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
    结合以上信息,回答下列问题:
    (1)求服装项目在选手考评中的权数;
    (2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.
    18、(10分)如图,四边形是菱形,,垂足分别为点.
    求证:;
    当菱形的对角线,BD=6时,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为_____.
    20、(4分)若数据,,…,的方差为6,则数据,,…,的方差是______.
    21、(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若,,则阴影部分的面积为__________.
    22、(4分)数据1,2,3,4,5的方差是______.
    23、(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)因式分解:
    (1)a(x﹣y)﹣b(y﹣x)2
    (2)2x3﹣8x2+8x.
    25、(10分)解方程:(1)=;
    (2)-1=.
    26、(12分)新能源汽车投放市场后,有效改善了城市空气质量。经过市场调查得知,某市去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆.
    (1)求今、明两年新能源汽车数量的平均增长率;
    (2)为鼓励市民购买新能源汽车,该市财政部门决定对今年增加的新能源汽车给予每辆0.8万元的政府性补贴.在(1)的条件下,求该市财政部门今年需要准备多少补贴资金?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    ∵函数y=有意义,
    ∴x-2≥0,
    ∴x≥2;
    故选C。
    2、D
    【解析】
    从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.
    【详解】
    解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,
    则60n=360,解得n=6,
    故他第一次回到出发点A时,共走了:8×6=48(m).
    故选:D.
    本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.
    3、D
    【解析】
    利用相似三角形的对应边成比例,分①△PAO≌△PAB,②△PAO∽△BAP两种情况分别求解即可.
    【详解】
    ∵点P的纵坐标为,
    ∴点P在直线y=上,
    ①当△PAO≌△PAB时,AB=b﹣1=OA=1,∴b=2,则P(1,);
    ②∵当△PAO∽△BAP时,PA:AB=OA:PA,
    ∴PA2=AB•OA,
    ∴=b﹣1,
    ∴(b﹣8)2=48,
    解得 b=8±4,
    ∴P(1,2+)或(1,2﹣),
    综上所述,符合条件的点P有3个,
    故选D.
    本题考查了相似三角形的性质,正确地分类讨论是解题的关键.
    4、A
    【解析】
    根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.
    【详解】
    解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,
    当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,
    当15°<∠EOD<75°时,四边形AFCE为平行四边形,
    当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,
    当75°<∠EOD<105°时,四边形AFCE为平行四边形,
    故选A.
    本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.
    5、C
    【解析】
    试题分析:确定最简公分母的方法是:
    (1)取各分母系数的最小公倍数;
    (1)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
    (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
    解:分式,,的分母分别是(x﹣y)、(x+y)、(x+y)(x﹣y).
    则最简公分母是(x+y)(x﹣y)=x1﹣y1.
    故选:C.
    【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.
    6、D
    【解析】
    根据三角形的中位线的性质和点的坐标,解答即可.
    【详解】
    过N作NE⊥y轴,NF⊥x轴,
    ∴NE∥x轴,NF∥y轴,
    ∵点A(0,2),B(4,0),点N为线段AB的中点,
    ∴NE=2,NF=1,
    ∴点N的坐标为(2,1),
    故选:D.
    本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.
    7、C
    【解析】
    ①使得BE与AE重合,即可构成邻边不等的矩形,如图:
    ∵∠B=60°,
    ∴AC=BC,
    ∴CD≠BC.
    ②使得CD与AD重合,即可构成等腰梯形,如图:
    ③使得CD与DE重合,构成有两个角为锐角的是菱形,如图:
    故计划可拼出①②③.
    故选C.
    8、A
    【解析】
    根据题意得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的面积是▱ABCD面积的.
    【详解】
    由平移的性质得,▱ABCD∽▱OECF,且AO=OC=AC,
    故四边形OECF的面积是▱ABCD面积的.,
    即图中阴影部分的面积为1cm1.
    故选A.
    此题主要考查学生对菱形的性质及平移的性质的综合运用.关键是得出四边形OECF的面积是▱ABCD面积的.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-6
    【解析】
    本题应先根据题意得出第三象限的角平分线的函数表达式,在根据、的坐标得出、的值,代入原式即可.
    【详解】
    解:点A(-2,x)和都在第三象限的角平分线上,
    ,,

    故答案为:.
    本题考查了第三象限的角平分线上的点的坐标特点及代数式求值,注意第三象限的角平分线上的点的横纵坐标相等.
    10、1
    【解析】
    利用菱形的面积等于对角线乘积的一半求解.
    【详解】
    菱形的面积=×4×9=1.
    故答案为1.
    此题考查菱形的性质,难度不大
    11、30°
    【解析】
    根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
    【详解】
    ∵CC′∥AB,
    ∴∠ACC′=∠CAB=75°,
    ∵△ABC绕点A旋转得到△AB′C′,
    ∴AC=AC′,
    ∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,
    ∴∠CAC′=∠BAB′=30°.
    故答案为:30°.
    本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.
    12、(3,6).
    【解析】
    设B、D两点的坐标分别为(1,y)、(x,2),再根据点B与点D在反比例函数的图象上求出xy的值,进而可得出C的坐标.
    【详解】
    解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),
    ∴设B、D两点的坐标分别为(1,y)、(x,2),
    ∵点B与点D在反比例函数的图象上,
    ∴y=6,x=3,
    ∴点C的坐标为(3,6).
    故答案为(3,6).
    本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.
    13、1
    【解析】
    根据转化的思想,把二次根式方程化成整式方程,先把移项到右边,再两边同时平方把化成整式,进化简得到=1,再两边进行平方,得x=1,从而得解.
    【详解】
    移项得,=3﹣,
    两边平方得,x+3=9+x﹣6,
    移项合并得,6=6,
    即:=1,
    两边平方得,x=1,
    经检验:x=1是原方程的解,
    故答案为1.
    本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2);(3)
    【解析】
    (1)根据勾股定理可得OA长,由对应边相等可得B点坐标;
    (2)通过证明得出点B坐标,用待定系数法求直线的函数表达式;
    (3)设点Q坐标为,可通过证三角形全等的性质可得a的值,由Q点坐标可间接求出P点坐标.
    【详解】
    解:(1)如图1,作轴于F,轴于E.
    由A点坐标可知
    在中,根据勾股定理可得;
    为等腰直角三角形

    轴于F,轴于E




    所以B点坐标为:
    (2)如图,过点作轴.
    为等腰直角三角形



    ∴,
    ∴,
    ∴.
    设直线的表达式为
    将和代入,得

    解得,
    ∴直线的函数表达式.
    (3)如图3,分两种情况,点Q可在x轴下方和点Q在x轴上方
    设点Q坐标为,点P坐标为
    当点Q在x轴下方时,连接,过点作 交其延长线于M,则M点坐标为
    为等腰直角三角形



    由题意得

    解得 ,所以
    当点Q在x轴上方时,连接,过点作 交其延长线于N,则N点坐标为
    同理可得,
    由题意得

    解得 ,所以
    综上的坐标为:.
    本题是一次函数与三角形的综合,主要考查了一次函数解析式、全等三角形的证明及性质,灵活运用全等的性质求点的坐标是解题的关键.
    15、(1)(a-b+1)(a-b-1) (2)原方程无解.
    【解析】
    (1)先用完全平方公式再用平方差公式分解.
    (2)按照去分母、去括号、移项合并同类项、系数化为1的步骤计算后,检验即可.
    【详解】
    (1)a2﹣1+b2﹣2ab=(a-b)2-1=(a-b+1)(a-b-1)
    (2)方程两边同时乘以(x+2)(x-2)得:
    x2-4x+4=x2+4x+4+16
    ,-8x=16
    x=-2
    检验:当x=-2时,(x+2)(x-2)=0
    所以x=-2是原方程的增根,原方程无解.
    本题考查的是分解因式及解分式方程,熟练掌握分解因式的方法及解分式方程的一般步骤是关键,要注意,分式方程必须检验.
    16、(1)7;(2)①90;90;②小聪同学的成绩处于中等偏上;③有50人.
    【解析】
    (1)由统计结果图即可得出结果;
    (2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.
    【详解】
    (1)由统计结果图得:参加“实心球”测试的男生人数是7人,
    故答案为:7;
    (2)①将95,100,82,90,89,90,90,85这组数据由小到大排列:82,85,89,90,90,90,95,100;
    根据数据得:众数为90,中位数为90,
    故答案为:90;90;
    ②8名男生平均成绩为:=90.125,
    ∵92>90.125,
    ∴小聪同学的成绩处于中等偏上;
    ③8名男生中达到优秀的共有5人,
    根据题意得:×80=50(人),
    则估计八年级80名男生中“立定跳远”成绩为优秀的学生约为50人.
    本题考查了众数、中位数、平均数、用样本估计总体等知识,熟练掌握众数、中位数、平均数的概念是解题的关键.
    17、 (1)10%;(2)见解析.
    【解析】
    (1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,
    (2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.
    【详解】
    解:(1)服装权数是
    (2)选择李明参加比赛
    理由如下:
    李明的总成绩
    张华的总成绩
    选择李明参加比赛.
    考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.
    18、(1)见解析;(2).
    【解析】
    (1)根据菱形的邻边相等,对角相等,证明△ABE与△CBF全等,再根据全等三角形对应边相等即可证明;
    (2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.
    【详解】
    (1)证明:四边形是菱形,
    ,
    又,
    ∴△ABE≌△CBF(AAS)
    (2)解:四边形是菱形,
    ,,,,



    .
    故答案为:(1)见解析;(2).
    本题考查了全等三角形的性质和判定,菱形的性质和面积,注意:菱形的四条边都相等,菱形的对角相等.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.
    【详解】
    ∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,
    ∴∠ADB=∠CGE=45°,
    ∴∠GDT=180°−90°−45°=45°,
    ∴∠DTG=180°−∠GDT−∠CGE=180°−45°−45°=90°,
    ∴△DGT是等腰直角三角形,
    ∵两正方形的边长分别为4,8,
    ∴DG=8−4=4,
    ∴GT=×4=2.
    故答案为2.
    本题考查了正方形的性质,等腰直角三角形的判定与性质.关键是掌握正方形的对角线平分一组对角
    20、1.
    【解析】
    根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.
    【详解】
    原来的方差,
    现在的方差
    =
    =1,方差不变.
    故答案为:1.
    此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
    21、40
    【解析】
    作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.
    【详解】
    如图,连接EF
    ∵△ADF与△DEF同底等高,
    ∴S =S
    即S −S =S −S,
    即S =S =15cm,
    同理可得S =S =25cm,
    ∴阴影部分的面积为S +S =15+25=40cm.
    故答案为40.
    此题考查平行四边形的性质,解题关键在于进行等量代换.
    22、1
    【解析】
    根据方差的公式计算.方差.
    【详解】
    解:数据1,1,3,4,5的平均数为,
    故其方差.
    故答案为:1.
    本题考查方差的计算.一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    23、AB=CD(答案不唯一)
    【解析】
    由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.
    【详解】
    解:添加条件为:AB=CD(答案不唯一);理由如下:
    ∵AB∥DC,AB=CD,
    ∴四边形ABCD是平行四边形,
    ∴AD=BC.
    故答案为AB=CD(答案不唯一).
    本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.
    【解析】
    (1)提取公因式x-y,在医院公因式法进行计算即可
    (1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解
    【详解】
    (1)原式=a(x-y)-b(y-x) =(x﹣y)[a﹣b(x﹣y)];
    (1)原式=1x(x -4x+4)=1x(x﹣1)1.
    此题考查提取公因式法与公式法的综合运用,解题关键在于提取公因式
    25、(1)x=2-2(2)无解
    【解析】
    (1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)方程两边同时乘以x得:
    2=(+1)x,
    解得:x==2-2,
    检验:当x=2-2时,x≠0
    所以x=2-2是分式方程的解;
    (2)方程两边同时乘以得:
    x2+2x+1-x2+1=4,
    解得:x=1,
    检验:当x=1时,
    所以x=1是增根,分式方程无解.
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    26、(1)40%;(2)财政部门今年需要准备1040万元补贴资金.
    【解析】
    (1)设今、明两年新能源汽车数量的平均增长率为x,根据“去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆”列出方程并解答;
    (2)根据(1)中的增长率可以得到:3250×增长率×0.1.
    【详解】
    解:(1)设今、明两年新能源汽车数量的平均增长率为,由题意得
    .
    解得,,(舍)
    因此,.
    所以,今、明两年新能源汽车数量的平均增长率为40%.
    (2)3250×40%×0.1=1040(万元).
    所以,财政部门今年需要准备1040万元补贴资金.
    本题考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年陕西省武功县数学九年级第一学期开学调研试题【含答案】:

    这是一份2024年陕西省武功县数学九年级第一学期开学调研试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024年辽阳市第十中学数学九年级第一学期开学调研试题【含答案】:

    这是一份2024年辽阳市第十中学数学九年级第一学期开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省朝阳市第一中学数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2024年辽宁省朝阳市第一中学数学九年级第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map