2025届陕西省西安市长安中学数学九年级第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形中,对角线相交于点,且,则图中长度为3的线段有( )
A.2条B.4条C.5条D.6条
2、(4分)在某学校汉字听写大赛中,有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )
A.中位数B.平均数C.众数D.方差
3、(4分)如图,一个运算程序,若需要经过两次运算才能输出结果,则的取值范围为
A.B.C.D.
4、(4分)在“爱我莒州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲8、7、9、8、8; 乙:7、9、6、9、9,则下列说法中错误的是( )
A.甲得分的众数是8B.乙得分的众数是9
C.甲得分的中位数是9D.乙得分的中位数是9
5、(4分)如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE面积相等的三角形(不包括△ADE)共有( )个.
A.3B.4C.5D.6
6、(4分)在同一平面直角坐标系中,函数与的图象可能是( )
A. B.
C. D.
7、(4分)在平行四边形ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为( ).
A.AB=4,AD=4B.AB=4,AD=7C.AB=9,AD=2D.AB=6,AD=2
8、(4分)点,点是一次函数图象上的两个点,且,则与的大小关系是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________.
10、(4分)如图,是菱形的对角线上一点,过点作于点. 若,则点到边的距离为______.
11、(4分)如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为_____.
12、(4分)如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处向正东方向行了100米到达B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.
13、(4分)实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为_____分.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=1.求DE的长.
15、(8分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了 名同学进行调查,同学们的睡眠时间的中位数是 小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?
16、(8分)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
(1)乙工程队每天修公路多少米?
(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?
17、(10分)如图,直线的解析式为,且与轴交于点D,直线经过点、,直线、交于点C.
(1)求直线的解析表达式;
(2)求的面积;
(3)在直线上存在异于点C的另一点P,使得与的面积相等,请求出点P的坐标.
18、(10分)某校计划成立下列学生社团: A.合唱团: B.英语俱乐部: C.动漫创作社; D.文学社:E.航模工作室为了解同学们对上述学生社团的喜爱情况某课题小组在全校学生中随机抽取了部分同学,进行“你最喜爱的一个学生社团”的调查,根据调查结果绘制了如下尚不完整的统计图.
请根据以上信息,解决下列问题:
(1)本次接受调查的学生共有多少人;
(2)补全条形统计图,扇形统计图中D选项所对应扇形的圆心角为多少;
(3)若该学校共有学生3000人,估计该学校学生中喜爱合唱团和动漫创作社的总人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知是整数,则正整数n的最小值为___
20、(4分)你喜欢足球吗?下面是对耒阳市某校八年级学生的调查结果:
则男同学中喜欢足球的人数占全体同学的百分比是________.
21、(4分)把点向上平移个单位长度,再向右平移个单位长度后得到点,则点的坐标是_____.
22、(4分)二次根式中,字母的取值范围是__________.
23、(4分)计算-的结果是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平面直角坐标系中,直线分别交x轴、y轴于A、B两点(AOAB)且AO、AB的长分别是一元二次方程x23x20的两个根,点C在x轴负半轴上,且AB:AC=1:2.
(1)求A、C两点的坐标;
(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
25、(10分)某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;
(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?
26、(12分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,
(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
①如图1,求证:BE=BF=3;
②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为 (直接写出结果).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
矩形的对角线相等且平分,所以,由题中条件可得是等边三角形,可知.
【详解】
解:四边形ABCD是矩形
又
是等边三角形
所以图中长度为3的线段有OA、OB、OC、OD、BC、AD,共6条.
故答案为D
本题考查了等边三角形的判定和性质,有一个角是的等腰三角形是等边三角形,等边三角形的三条边都相等,灵活运用矩形及等边三角形的性质求线段长是解题的关键.
2、A
【解析】
可知一共有21名同学参赛,要取前10名,因此只需知道这组数据的中位数即可.
【详解】
解:∵ 有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,
∴小颖是否能进入决赛,将21名同学的成绩从小到大排列,可知第11名同学的成绩是这组数据的中位数,
∴小颖要知道这组数据的中位数,就可知道自己是否进入决赛.
故答案为:A
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
3、C
【解析】
输入x,需要经过两次运算才能输出结果,说明第一次运算的结果为:5x+2<37,经过第二次运算5(5x+2)+2≥37,两个不等式联立成为不等式组,解之即可.
【详解】
解:根据题意得:
,
解得:1≤x<7,
即x的取值范围为:1≤x<7,
故选C.
本题考查一元一次不等式组的应用,正确找出等量关系,列出一元一次不等式组是解题的关键.
4、C
【解析】
众数是在一组数据中出现次数最多的数;将一组数据按从小到大顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数称为中位数;
【详解】
∵甲8、7、9、8、8;
∴甲的众数为8,中位数为8
∵乙:7、9、6、9、9
∴已的众数为9,中位数为9
故选C.
本题考查的是众数,中位数,熟练掌握众数,中位数是解题的关键.
5、C
【解析】
试题分析:首先利用平行四边形的性质证明△ADB≌△CBD,从而得到△CDB,与△ADB面积相等,再根据DO=BO,AO=CO,利用三角形的中线把三角形的面积分成相等的两部分可得△DOC、△COB、△AOB、△ADO面积相等,都是△ABD的一半,根据E是AB边的中点可得△ADE、△DEB面积相等,也都是△ABD的一半,从而得到S△DOC=S△COB=S△DOA=S△AOB=S△ADE=S△DEB=S△ADB.不包括△ADE共有5个三角形与△ADE面积相等,
故选C.
考点:平行四边形的性质
6、C
【解析】
根据一次函数及二次函数的图像性质,逐一进行判断.
【详解】
解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;
B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;
C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴在y轴右侧,故此选项正确;
D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;
故选:C.
本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.
7、B
【解析】
利用平行四边形的性质知,平行四边形的对角线互相平分,再结合三角形三边关系分别进行分析即可.
【详解】
解:因为:平行四边形ABCD,AC=10,BD=6,
所以:OA=OC=5,OB=OD=3,
所以:,
所以:C,D错误,
又因为:四边形ABCD是平行四边形,
∴AD=BC、∵AD=4, ∴BC=4,
∵AB=4,AC=10, ∴AB+BC<AC,
∴不能组成三角形,故此选此选项错误;
因为:AB=4,AD=7,所以:
三角形存在.
故选B.
本题考查平行四边形的性质及三角形的三边关系,掌握平行四边形的性质和三角形三边关系是解题关键.
8、A
【解析】
根据一次函数的增减性即可判断.
【详解】
∴函数,y随x的增大而减小,当时,.故选A.
此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、31或1
【解析】
首先设个位数字为x,则十位数字为x+2,即可以列出不等式求解.
【详解】
解:设个位数字为x,则十位数字为x+2,由题意得
10(x+2)+x<40
解得:
因为x是非负整数,
所以x=1或0,该数的个位数字为1或0,则十位数字是3或2,故这个两位数为31或1.
故答案为:31或1.
此题考查一元一次不等式的应用,理解题意,找出不等关系列出不等式即可求解.
10、4
【解析】
首先根据菱形的性质,可得出∠ABD=∠CBD,然后根据角平分线的性质,即可得解.
【详解】
解:∵四边形ABCD为菱形,BD为其对角线
∴∠ABD=∠CBD,即BD为角平分线
∴点E到边AB的距离等于EF,即为4.
此题主要考查菱形和角平分线的性质,熟练运用,即可解题.
11、1.
【解析】
设A(m,),则B(﹣mk,),设AB交y轴于M,利用平行线的性质,得到AM和MB的比值,即可求解.
【详解】
解:设A(m,),则B(﹣mk,),设AB交y轴于M.
∵EM∥BC,
∴AM:MB=AE:EC=1:1,
∴﹣m:(﹣mk)=1:1,
∴k=1,
故答案为1.
本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.
12、50
【解析】
在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.
【详解】
由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC,
在Rt△APC中,∠PAC=30°,AC=PC=3BC=100+BC,
解得,BC=50,
∴PC=50(米),
答:灯塔P到环海路的距离PC等于50米.
故答案为:50
此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
13、100
【解析】
利用加权平均数的公式直接计算.用91分,90分,81分别乘以它们的百分比,再求和即可.
【详解】
小惠这学期的体育成绩=91×20%+90×30%+81×10%=88.1(分).
故答案为88.1.
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
三、解答题(本大题共5个小题,共48分)
14、(1)、证明过程见解析;(2)、
【解析】
试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.
试题解析:(1)证明:∵AD平分∠BAC,
∴∠BAD=∠DAC,
∵∠EAD=∠ADE,
∴∠BAD=∠ADE,
∴AB∥DE,
∴△DCE∽△BCA;
(2)解:∵∠EAD=∠ADE,
∴AE=DE,
设DE=x,
∴CE=AC﹣AE=AC﹣DE=1﹣x,
∵△DCE∽△BCA,
∴DE:AB=CE:AC,
即x:3=(1﹣x):1,
解得:x=,
∴DE的长是.
考点:相似三角形的判定与性质.
15、(1)20,6;(2)估计年级每个学生的平均睡眠时间约6.3小时
【解析】
分析:(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;
(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.
详解:(1)共抽取的同学人数=6÷30%=20(人),
睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),
按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,
第10个和第11个数据都是6小时,它们的平均数也是6小时,
∴同学们的睡眠时间的中位数是6小时左右;
故答案为20,6;
将条形统计图补充完整如图所示:
(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),
∴估计年级每个学生的平均睡眠时间约6.3小时.
点睛:本题考查了条形统计呼和扇形统计图以及中位数和平均数的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
16、(1)120米(2)y乙=120x﹣1,y甲=60x(3)2
【解析】
解:(1)由图得:720÷(2﹣3)=120(米),
答:乙工程队每天修公路120米.
(2)设y乙=kx+b,则,解得:.∴y乙=120x﹣1.
当x=6时,y乙=1.
设y甲=kx,则1=6k,k=60,∴y甲=60x.
(3)当x=15时,y甲=200,∴该公路总长为:720+200=1620(米).
设需x天完成,由题意得:
(120+60)x=1620,解得:x=2.
答:该项工程由甲、乙两工程队一直合作施工,需2天完成
(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数.
(2)根据函数的图象运用待定系数法即可求出y与x之间的函数关系式.
(3)先求出该公路总长,再设出需要x天完成,根据题意列出方程组,求出x,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.
17、(1);(2);(3)P(6,3).
【解析】
试题分析:(1)利用待定系数法求直线的解析表达式;
(2)由方程组得到C(2,﹣3),再利用x轴上点的坐标特征确定D点坐标,然后根据三角形面积公式求解;
(3)由于△ADP与△ADC的面积相等,根据三角形面积公式得到点D与点C到AD的距离相等,则D点的纵坐标为3,对于函数,计算出函数值为3所对应的自变量的值即可得到D点坐标.
试题解析:(1)设直线的解析表达式为,把A(4,0)、B(3,)代入得:,解得:,所以直线的解析表达式为;
(2)解方程组:,得:,则C(2,﹣3);当y=0时,,解得x=1,则D(1,0),所以△ADC的面积=×(4﹣1)×3=;
(3)因为点D与点C到AD的距离相等,所以D点的纵坐标为3,当y=3时,,解得x=6,所以D点坐标为(6,3).
考点:两条直线相交或平行问题.
18、(1)200;(2)补全条形统计图见解析;D选项所对应扇形的圆心角度数=72°;(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
【解析】
(1)由社团人数及其所占百分比可得总人数;
(2)总人数减去其它社团人数可求得的人数,再用乘以社团人数所占比例即可得;
(3)总人数乘以样本中、社团人数和占被调查人数的比例即可得.
【详解】
解:(1)本次接受调查的学生共有(人,
(2)社团人数为(人,
补全图形如下:
扇形统计图中选项所对应扇形的圆心角为,
(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为(人.
答:估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
20、50
【解析】
先计算调查的男同学喜欢与不喜欢的全体人数,再用男同学中喜欢的人数比上全体人数乘以100%即可得出答案.
【详解】
调查的全体人数为75+15+36+24=150人,
所以男同学中喜欢足球的人数占全体同学的百分比=
故答案为50.
本题考查的是简单的统计,能够计算出调查的全体人数是解题的关键.
21、
【解析】
根据向上平移纵坐标加,向右平移横坐标加解答即可.
【详解】
解:点(-2,1)向上平移2个单位长度,纵坐标变为1+2=3,
向右平移3个单位长度横坐标变为-2+3=1,
所以,点B的坐标为(1,3).
故答案为:(1,3).
本题本题考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
22、
【解析】
二次根式有意义的条件就是被开方数是非负数,即可求解.
【详解】
根据题意得:x﹣1≥0,解得:x≥1.
故答案为x≥1.
本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
23、2
【解析】
先利用算术平方根和立方根进行化简,然后合并即可.
【详解】
解:原式=4-2=2
故答案为:2
本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A(1,0),C(-3,0);(2) (3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(1,).
【解析】
(1)根据方程求出AO、AB的长,再由AB:AC=1:2求出OC的长,即可得到答案;
(2)分点M在CB上时,点M在CB延长线上时,两种情况讨论S与t的函数关系式;
(3)分AQ=AB,BQ=BA,BQ=AQ三种情况讨论可求点Q的坐标.
【详解】
(1)x23x20,
(x-1)(x-2)=0,
∴x1=1,x2=2,
∴AO=1,AB=2,
∴A(1,0), ,
∵AB:AC=1:2,
∴AC=2AB=4,
∴OC=AC-OA=4-1=3,
∴C(-3,0).
(2) ∵,
∴,
∵,
∴,
∴△ABC是直角三角形,且∠ABC=90,
由题意得:CM=t,BC=,
当点M在CB上时, ,
②当点M在CB延长线上时, (t>).
综上,.
(3)存在,
①当AB是菱形的边时,如图所示,
在菱形AP1Q1B中,Q1O=AO=1,∴ Q1(-1,0),
在菱形ABP2Q2中,AQ2=AB=2,∴Q2(1,2),
在菱形ABP3Q3中,AQ3=AB=2,∴Q3(1,-2);
②当AB为菱形的对角线时,如图所示,
设菱形的边长为x,则在Rt△AP4O中,
,
解得x=,
∴Q4(1,).
综上,平面内满足条件的点Q的坐标为(-1,0),(1,2),(1,-2),(1,).
此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.
25、(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
【解析】
(1)分别根据:未超过20吨时,水费y=2×相应吨数;超过20吨时,水费y=2×20+超过20吨的吨数×2.5;列出函数解析式;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,然后依据两个月共交水费95元列方程求解即可.
【详解】
解:(1)当0≤x≤20时,y=2x;
当x>20时,y=2×20+2.5(x﹣20)=2.5x﹣10;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,.
根据题意,得:2m+2.5(45﹣m)﹣10=95,
解得:m=1.
答:该户居民5月份用水1吨,6月份用水量为30吨.
故答案为(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
本题考查了一次函数的应用、一元一次方程的应用;得到用水量超过20吨的水费的关系式是解决本题的关键.
26、(1)①详见解析;②12;(2).
【解析】
(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;
②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;
(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.
【详解】
解:(1)①∵四边形ABCD是正方形,
∴AB=BC=AD=6,∠BAD=∠BCD=90°,
∵点E是中点,
∴AE=AD=3,
在Rt△ABE中,根据勾股定理得,BE==3,
在△BAE和△BCF中,
∴△BAE≌△BCF(SAS),
∴BE=BF,
∴BE=BF=3;
②如图2,连接BD,
在Rt△ABC中,AC=AB=6,
∴BD=6,
∵四边形ABCD是正方形,
∴AD∥BC,
∴△AEM∽△CMB,
∴,
∴,
∴AM=AC=2,
同理:CN=2,
∴MN=AC﹣AM﹣CN=2,
由①知,△ABE≌△CBF,
∴∠ABE=∠CBF,
∵AB=BC,∠BAM=∠BCN=45°,
∴△ABM≌△CBN,
∴BM=BN,
∵AC是正方形ABCD的对角线,
∴AB=AD,∠BAM=∠DAM=45°,
∵AM=AM,
∴△BAM≌△DAM,
∴BM=DM,
同理:BN=DN,
∴BM=DM=DN=BN,
∴四边形BMDN是菱形,
∴S四边形BMDN=BD×MN=×6×2=12;
(2)如图3,设DH=a,
连接BD,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵DH⊥BH,
∴∠BHD=90°,
∴点B,C,D,H四点共圆,
∴∠DBH=∠DCH=22.5°,
在BH上取一点G,使BG=DG,
∴∠DGH=2∠DBH=45°,
∴∠HDG=45°=∠HGD,
∴HG=HD=a,
在Rt△DHG中,DG=HD=a,
∴BG=a,
∴BH=BG+HG=A+A=(+1)a,
∴.
故答案为.
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.
题号
一
二
三
四
五
总分
得分
男同学
女同学
喜欢的
75
36
不喜欢的
15
24
2025届陕西省西安市长安中学数学九上开学学业水平测试试题【含答案】: 这是一份2025届陕西省西安市长安中学数学九上开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届陕西省西安市东仪中学数学九年级第一学期开学学业质量监测试题【含答案】: 这是一份2025届陕西省西安市东仪中学数学九年级第一学期开学学业质量监测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届陕西省西安市碑林区西北工业大附属中学数学九年级第一学期开学检测试题【含答案】: 这是一份2025届陕西省西安市碑林区西北工业大附属中学数学九年级第一学期开学检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。