2024年江苏省无锡市东湖塘中学数学九上开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
则这50名学生这一周在校的平均体育锻炼时间是( )
A.6.2小时B.6.4小时C.6.5小时D.7小时
2、(4分)已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是( )
A.6 B.7 C.8 D.9
3、(4分)把函数与的图象画在同一个直角坐标系中,正确的是( )
A.B.
C.D.
4、(4分)下列函数中,是正比例函数的是( )
A.B.C.D.
5、(4分)如图,若一次函数与的交点坐标为,则的解集为( )
A.B.C.D.
6、(4分)下列式子从左到右的变形一定正确的是( )
A.B.C.D.
7、(4分)下列方程中有实数根的是( )
A.;B.=;C.;D.=1+.
8、(4分)如图所示,在矩形纸片中,,,折叠纸片使边与对角线重合,点落在点处,折痕为,则的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.
10、(4分)在中,若,则_____________
11、(4分)若某多边形有5条对角线,则该多边形内角和为_____.
12、(4分)在平面直角坐标系中,已知点在第二象限,那么点在第_________象限.
13、(4分)不等式的负整数解有__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1);
(2)已知,,求的值.
15、(8分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.
16、(8分)计算(结果可保留根号):
(1) (2)
17、(10分)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.
(1)求证:▱ABCD为矩形;
(2)若AB=4,求▱ABCD的面积.
18、(10分)如图,在中,,平分,垂直平分于点,若,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若a,b都是实数,b=+﹣2,则ab的值为_____.
20、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
21、(4分)已知关于 的方程,如果设,那么原方程化为关于的方程是____.
22、(4分)如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.
23、(4分)如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1) ;
(2)
25、(10分)按指定的方法解下列一元二次方程:
(1)(配方法) (2)(公式法)
26、(12分)已知命题“若 a>b,则 a2>b2”.
(1)此命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出一个 反例.
(2)写出此命题的逆命题,并判断此逆命题的真假;若是真命题,请给予证明;若是假 命题,请举出一个反例.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
平均数是指在一组数据中所有数据之和再除以数据的个数.因此,
这50名学生这一周在校的平均体育锻炼时间是=6.4(小时).故选B.
2、C
【解析】
根据这组数据是从大到小排列的,找出最中间的数即可.
【详解】
解:∵原数据从大到小排列是:9,9,8,8,7,6,5,
∴处于最中间的数是8,
∴这组数据的中位数是8.
故选C.
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.
3、D
【解析】
根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.
【详解】
解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.
故选D.
本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.
4、B
【解析】
正比例函数的一般形式是y=kx(k≠0).
【详解】
解:A.该函数不符合y=kx(k为常数且k≠0)的形式,自变量的次数是2,属于二次函数,故本选项错误;
B.该函数符合y=kx(k为常数且k≠0)的形式,是正比例函数,故本选项正确;
C.该函数不符合y=kx(k为常数且k≠0)的形式,自变量的次数是-1,属于反比例函数,故本选项错误.
D.该函数不符合y=kx(k为常数且k≠0)的形式,是一次函数,故本选项错误;
故选:B.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.
5、A
【解析】
根据两函数图象的上下位置关系结合交点的横坐标,即可得出不等式的解集.
【详解】
解:观察函数图象,可知:当x<3时,直线在直线的下方,
∴不等式的解集为.
故选:A.
本题考查了一次函数与一元一次不等式以及在数轴上表示不等式的解集,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
6、D
【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.
【详解】
A.无法进行运算,故A项错误.
B.当c=0时无法进行运算,故B项错误.
C. 无法进行运算,故C项错误.
D. ,故D项正确.
故答案为:D
本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.
7、B
【解析】
【分析】根据算术平方根意义或非负数性质以及分式方程的意义,可以判断方程的根的情况.
【详解】A. ,算术平方根不能是负数,故无实数根;
B. =,两边平方可化为二元一次方程,有实数根,故可以选;
C.方程化为 ,平方和不能是负数,故不能选;
D.由 =1+得x=1,使分母为0,故方程无实数根.
故选:B
【点睛】本题考核知识点:方程的根.解题关键点:根据方程的特殊形式判断方程的根的情况.
8、D
【解析】
由题得BD= =5,根据折叠的性质得出△ADG≌△A′DG,继而得A′G=AG,A′D=AD,A′B=BD-A′G,再Rt△A′BG根据勾股定理构建等式求解即可.
【详解】
解:由题得BD= =5,
根据折叠的性质得出:△ADG≌△A′DG,
∴A′G=AG,A′D=AD=3,
A′B=BD-A′G=5-3=2,BG=4-A′G
在Rt△A′BG中,BG2=A′G2+A′B2可得:,
解得A′G=,则AG=,
故选:D.
本题主要考查折叠的性质,由已知能够注意到△ADG≌△A′DG是解决的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
设D(m,),则P(2m,),作PH⊥AB于H.根据正方形性质,构建方程可解决问题.
【详解】
解:设D(m,),则P(2m,),作PH⊥AB于H.
故答案为:2
本题考核知识点:反比例函数的图象、正方形性质. 解题关键点:利用参数构建方程解决问题.
10、;
【解析】
根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.
【详解】
根据题意中,若
所以可得BC=
故答案为1
本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.
11、540°.
【解析】
根据多边形对角线的条数求出多边形的边数,再根据多边形的内角和公式求出即可.
【详解】
设多边形的边数为n,
∵多边形有5条对角线,
∴=5,
解得:n=5或n=﹣2(舍去),
即多边形是五边形,
所以多边形的内角和为(5﹣2)×180°=540°,
故答案为:540°.
本题考查了多边形的对角线和多边形的内角,能正确求出多边形的边数是解此题的关键,注意:边数为n的多边形的对角线的条数是,边数为n的多边形的内角和=(n-2)×180°.
12、三
【解析】
根据在第二象限中,横坐标小于0,纵坐标大于0,所以-n<0,m<0,再根据每个象限的特点,得出点B在第三象限,即可解答.
【详解】
解:∵点A(m,n)在第二象限,
∴m<0,n>0,
∴-n<0,m<0,
∵点B(-n,m)在第三象限,
故答案为三.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
13、-5、-4、-3、-2、-1
【解析】
求出不等式的解集,取解集范围内的负整数即可.
【详解】
解:移项得:
合并同类项得:
系数化为1得:
即
所以原不等式的负整数解为:-5、-4、-3、-2、-1
故答案为:-5、-4、-3、-2、-1
本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)15.
【解析】
(1)根据二次根式性质化简后合并求解即可;
(2)先对变形得,先分别求出,,代入即可.
【详解】
解:(1)原式
;
(2)变形得,
根据题意,,
代入得:.
本题考查了二次根式,熟练进行分母有理化是解题的关键.
15、(1)证明见解析;(2)1.
【解析】
(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;
(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.
【详解】
证明:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,
∵E、F分别是OB、OC的中点,
∴EF∥BC,EF=BC,
∴DE=EF,DG∥EF,
∴四边形DEFG是平行四边形;
(2)∵∠OBC和∠OCB互余,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°,
∵M为EF的中点,OM=3,
∴EF=2OM=1.
由(1)有四边形DEFG是平行四边形,∴DG=EF=1.
16、(1);(2)
【解析】
(1)先化为最简二次根式,然后合并同类项即可;
(2)利用多项式乘法法则进行计算即可.
【详解】
解:(1)原式
(2)原式
本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.
17、(1)见解析;(2).
【解析】
(1)根据题意可求OA=OB=DO,∠AOB=60°,可得∠BAD=90°,即结论可得;
(2)根据勾股定理可求AD的长,即可求▱ABCD的面积.
【详解】
解(1)∵△AOB为等边三角形∴∠BAO=60°=∠AOB,OA=OB
∵四边形ABCD是平行四边形
∴OB=OD,
∴OA=OD
∴∠OAD=30°,
∴∠BAD=30°+60°=90°
∴平行四边形ABCD为矩形;
(2)在Rt△ABC中,∠ACB=30°,
∴AB=4,BC=AB=4
∴▱ABCD的面积=4×4=16
本题考查了矩形的性质和判定,等边三角形的性质,灵活运用这些性质解决问题是本题的关键.
18、的长为.
【解析】
根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.
【详解】
解:设,则,
平分,,,
,
又垂直平分,
,
,
在中,,
,
,即,
解得.
即的长为.
本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.
【详解】
解:∵b=+﹣2,
∴
∴1-2a=0,
解得:a=,则b=-2,
故ab=()-2=1.
故答案为1.
此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a的值是解题关键.
20、
【解析】
设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
【详解】
解:在菱形ABCD中,∠ABC=120°,
∴∠ABE=60°,AC⊥BD,
∵菱形ABCD的周长为16,
∴AB=4,
在RT△ABE中,AE=ABsin∠ABE=,
故可得AC=2AE=.
故答案为.
此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
21、.
【解析】
先根据得到,再代入原方程进行换元即可.
【详解】
由,可得
∴原方程化为3y+
故答案为:3y+.
本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.
22、-1
【解析】
根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.
【详解】
由题意得:B点坐标为(0,),∴OB=,
∵在直角三角形AOB中,点是线段的中点,
∴OD=BD=AD,
又∵为直角三角形,
∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,
∴△AOB为等腰直角三角形,
∴OA=OB=,
∴A点坐标为(,0),
∴,
解得k=-1.
故答案为:-1.
本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.
23、
【解析】
延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,由菱形的性质和勾股定理再结合已知条件可求出NF,DN的长,在直角三角形DNF中,再利用勾股定理即可求出DF的长.
【详解】
延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,
∵四边形ABCD和四边形BEFG都是菱形,
∴GF∥BE,EF∥AM,
∴四边形AMFE是平行四边形,
∴AM=EF=2,MF=AE=AB+BE=5+2=7,
∴DM=AD﹣AM=5﹣2=3,
∵∠A=60°,
∴∠DAH=30°,
∴MN=DM=,
∴DN==,NF=MF﹣MN=,
在Rt△DNF中,DF==,
故答案为:.
本题考查了菱形的性质、平行四边形的判定和性质、含30°直角三角形的性质以及勾股定理的运用,正确作出图形的辅助线是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)10 ;(2)
【解析】
根据二次根式的混合运算法则进行计算,即可解答.
【详解】
(1)原式= ;
(2)
=
= ;
此题考查二次根式的混合运算,解题关键在于掌握运算法则.
25、(1),;(2),
【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;
(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.
【详解】
(1)
∴
解得,,;
(2)
在这里,,b=-2,
∴
解得,,
本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:
26、(1)假命题,举例如a=1,b=-1;反例不唯一.(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1;反例不唯一.
【解析】
(1)判断是否为真命题,需要分析由题设是否能推出结论,本题可从a、b的正负性来考虑反例,如a=1,b=-1来进行检验判断;
(2)先写出逆命题,再按照(1)的思路进行判断.
【详解】
解:(1)假命题,举例如a=1,b=-1,满足a>b,但很明显,,不满足a2>b2,所以原命题是假命题;当然反例不唯一.
(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1,满足a2>b2,但不满足a>b;反例也不唯一.
本题主要考查命题和逆命题的知识,判断命题的真假关键是熟知课本中有关的定义和性质定理等,另外,正确举出反例是判断假命题的常用方法.
题号
一
二
三
四
五
总分
得分
时间(小时)
5
6
7
8
人数
10
15
20
5
2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】: 这是一份2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
2024-2025学年江苏省无锡市南菁中学数学九上开学考试模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市南菁中学数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。