终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】

    立即下载
    加入资料篮
    2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】第1页
    2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】第2页
    2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】

    展开

    这是一份2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列条件中,不能判定四边形是平行四边形的是( )
    A.,B.,
    C.,D.,
    2、(4分)如图,,的顶点在上,交于点,若,则( )
    A.B.C.D.
    3、(4分)如图,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为( )
    A.cm2B.cm2C.cm2D.cm2
    4、(4分)如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是( )
    A.SASB.AAAC.SSSD.HL
    5、(4分)下列命题中,正确的是( )
    A.矩形的邻边不能相等B.菱形的对角线不能相等
    C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直
    6、(4分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是
    A.(6,0)B.(6,3)C.(6,5)D.(4,2)
    7、(4分)如图,平行四边形ABCD中,∠A的平分线AE交CD于E, AB=5,BC=3,则EC的长( )
    A.2B.3C.4D.2.5
    8、(4分)不等式组的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)当a=-3时, =_____.
    10、(4分)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D. 若∠BAC=40°,则AD弧的度数是___度.
    11、(4分)化简:=______________
    12、(4分)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为__________.
    13、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知一个三角形的三边长分别为,求这个三角形的周长(要求结果化简).
    15、(8分)计算:.
    16、(8分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.
    (1)求5张白纸粘合后的长度;
    (2)设x张白纸粘合后总长为ycm.写出y与x之间的函数关系式;
    (3)求当x=20时的y值,并说明它在题目中的实际意义.
    17、(10分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
    (1)根据上图填写下表:
    (2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
    (3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
    18、(10分)大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.
    (1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?
    (2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若是整数,则满足条件的最小正整数为________.
    20、(4分)如图,平行四边形的对角线相交于点,且,过点作,交于点.若的周长为,则______.
    21、(4分)有一组勾股数,其中的两个分别是8和17,则第三个数是________
    22、(4分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cs34°≈0.83,tan34°≈0.67)
    23、(4分)如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________. _________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
    (1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
    (2)当它们行驶7了小时时,两车相遇,求乙车速度.
    25、(10分)在平面直角坐标系xOy中,点A(0,4),B(1,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+1.
    (1)当直线l经过D点时,求点D的坐标及k的值;
    (2)当直线L与正方形有两个交点时,直接写出k的取值范围.
    26、(12分)先化简在求值: ,其中
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据平行四边形的判定方法逐个判断即可解决问题.
    【详解】
    解:A、若AB=CD,∠A=∠B,不可以判定四边形ABCD是平行四边形;
    B、∵AB∥CD,
    ∴∠B+∠C=180°,
    ∵∠A=∠C,
    ∴∠A+∠B=180°,
    ∴AD∥BC,
    ∴四边形ABCD是平行四边形,故B可以判定四边形ABCD是平行四边形;
    C、根据一组对边平行且相等的四边形是平行四边形,可知C可以判定四边形ABCD是平行四边形;
    D、根据两组对边分别平行的四边形是平行四边形,可知D可以判定四边形ABCD是平行四边形;
    故选:A.
    本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.
    2、B
    【解析】
    由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠BAD=∠C=100°,AD∥BC,
    ∴∠2=∠ADE,
    ∵l1∥l2,
    ∴∠ADE+∠BAD+∠1=180°,
    ∴∠1+∠2=180°-∠BAD=80°;
    故选:C.
    本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.
    3、D
    【解析】
    根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5和平行四边形AB∁nOn的面积.
    【详解】
    解:∵设平行四边形ABC1O1的面积为S1,
    ∴S△ABO1=S1,
    又∵S△ABO1=S矩形,
    ∴S1=S矩形=5=;
    设ABC2O2为平行四边形为S2,
    ∴S△ABO2=S2,
    又∵S△ABO2=S矩形,
    ∴S2=S矩形=;
    ,…,
    ∴平行四边形AB∁nOn的面积为(cm2).
    故选D.
    此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.
    4、D
    【解析】
    :∵PD⊥AB于D,PE⊥AC于E,
    ∴△APD与△APE都为直角三角形,
    ∵PA为公共边,
    ∴△APD≌△APE.
    故选D.
    5、D
    【解析】
    根据矩形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.
    【详解】
    A、矩形的邻边能相等,若相等,则矩形变为正方形,故A错误;
    B、菱形的对角线不一定相等,若相等,则菱形变为正方形,故B错误;
    C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,故C错误;
    D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,故D正确.
    故选D.
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    6、B
    【解析】
    试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.
    A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;
    B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;
    C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;
    D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.
    故选B.
    7、A
    【解析】
    根据平行四边形的性质可得AB=CD=5,AD=BC=3,AB∥CD,然后根据平行线的性质可得∠EAB=∠AED,然后根据角平分线的定义可得∠EAB=∠EAD,从而得出∠EAD=∠AED,根据等角对等边可得DA=DE=3,即可求出EC的长.
    【详解】
    解:∵四边形ABCD是平行四边形,AB=5,BC=3,
    ∴AB=CD=5,AD=BC=3,AB∥CD
    ∴∠EAB=∠AED
    ∵AE平分∠DAB
    ∴∠EAB=∠EAD
    ∴∠EAD=∠AED
    ∴DA=DE=3
    ∴EC=CD-DE=2
    故选A.
    此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.
    8、B
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.
    【详解】
    ∵解不等式得:x<0,解不等式得:x≤3,
    ∴不等式组的解集为x<0,
    在数轴上表示为:,
    故选B.
    本题考查了解一元一次不等式组,在数轴上表示不等式的解集,解题的关键是先解不等式再画数轴.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    把a=-1代入二次根式进行化简即可求解.
    【详解】
    解:当a=-1时,=1.
    故答案为:1.
    本题考查二次根式的计算,理解算术平方根的意义是解题的关键.
    10、140
    【解析】
    首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得AD弧的度数.
    【详解】
    连接AD、OD,
    ∵AB为直径,
    ∴∠ADB=90°,
    即AD⊥BC,
    ∵AB=AC,
    ∴∠BAD=∠CAD=∠BAC=20°,BD=DC,
    ∴∠ABD=70°,
    ∴∠AOD=140°
    ∴AD弧的度数为140°;故答案为140.
    本题考查等腰三角形的性质和圆周角定理,解题的关键是掌握等腰三角形的性质和圆周角定理.
    11、
    【解析】
    分析:把分式进行化简就是对分式进行约分,首先要对分子、分母进行分解因式,然后约分.
    详解:原式==.
    故答案为:.
    点睛:分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键.
    12、
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.
    【详解】
    ∵△ABC的三条中位线组成△A1B1C1,
    ∴A1B1=AC,B1C1=AB,A1C1=BC,
    ∴△A1B1C1的周长=△ABC的周长=×3=,
    依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,
    则△A5B5C5的周长为=,
    故答案为.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.
    13、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.
    【详解】
    解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
    ∴CD=BD,
    ∵BC=BD,
    ∴CD=BC=BD,
    ∴△BCD是等边三角形,
    ∴∠B=60°,
    ∴∠A=1°.
    故答案为:1.
    考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.
    三、解答题(本大题共5个小题,共48分)
    14、.
    【解析】
    根据题目中的数据可以求得该三角形的周长
    【详解】
    解:∵这个三角形的三边长分别为: ,
    ∴这个三角形的周长是:=.
    本题考查二次根式的性质与化简,解答本题的关键是明确二次根式的意义.
    15、3.
    【解析】
    根据二次根式的性质化简计算可得.
    【详解】
    解:原式.
    本题主要考查二次根式的加减,解题的关键是掌握二次根式的性质.
    16、(1)1cm;(2)y=17x+2;(2)242cm
    【解析】
    (1)根据图形可得5张白纸的长减去粘合部分的长度即可;
    (2)根据题意x张白纸的长减去粘合部分的长度就是y的值;
    (2)把x=20代入(2)得到的函数解析式即可求解.
    【详解】
    解:(1)由题意得,20×5-2×(5-1)=1.
    则5张白纸粘合后的长度是1cm;
    (2)y=20x-2(x-1),即y=17x+2.
    (2)当x=20时,y=17×20+2=242.
    答:实际意义是:20张白纸粘合后的长度是242cm.
    本题考查了函数的关系式,正确理解纸条的长度等于白纸的长度减去粘合部分的长度是关键.
    17、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
    【解析】
    (1)根据中位数和众数的定义填空.
    (2)根据平均数和中位数比较两个班的成绩.
    (3)比较每班前两名选手的成绩即可.
    【详解】
    解:(1)由条形图数据可知:中位数填85,众数填1.
    故答案为:85,1;
    (2)因两班平均数相同,
    但八(1)班的中位数高,
    所以八(1)班的成绩较好.
    (3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
    本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
    18、 (1);(2).
    【解析】
    试题分析:(1)求出第二次转到95的可能性,即为两次数字之和为100的可能性;
    (2)求出转到数字在35以上的总个数,利用所求情况数(35以上的总个数)与总情况数(20)作比即可.
    (1)由题意分析可得:要使他两次数字之和为100,则第二次必须转到95,因为总共有20个数字,所以他两次数字之和为100的可能性为 .
    (2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,因为总共有20个数字,所以“爆掉”的可能性为.
    点睛:本题考查了可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    把28分解因数,再根据二次根式的定义判断出n的最小值即可.
    【详解】
    解:∵28=4×1,4是平方数,
    ∴若是整数,则n的最小正整数值为1,
    故答案为1.
    本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.
    20、6.
    【解析】
    根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,即可解答.
    【详解】
    ∵ABCD是平行四边形,
    ∴OA=OC,AD=BC,AB=CD
    ∵OM⊥AC,
    ∴AM=MC.
    ∴△CDM的周长=AD+CD=9,
    BC=9-3=6
    故答案为6.
    此题考查平行四边形的性质,解题关键在于得出MC=MA
    21、1
    【解析】
    设第三个数是,①若为最长边,则,不是整数,不符合题意;② 若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为1.
    22、1.
    【解析】
    试题解析:在RtΔABC中,sin34°=
    ∴AC=AB×sin34°=500×0.56=1米.
    故答案为1.
    23、
    【解析】
    在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和 AD4的值.
    【详解】
    解:在△AB1D2中,
    ∵,
    ∴∠B1AD2=30°,
    ∴B1D2=,
    ∴AD2==,
    ∵四边形AB2C2D2为菱形,
    ∴AB2=AD2=,
    在△AB2D3中,
    ∵,
    ∴∠B2AD3=30°,
    ∴B2D3=,
    ∴AD3== ,
    ∵四边形AB3C3D3为菱形,
    ∴AB3=AD3=,
    在△AB3D4中,
    ∵,
    ∴∠B3AD4=30°,
    ∴B3D4=,
    ∴AD4==,
    故答案为,.
    本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.
    二、解答题(本大题共3个小题,共30分)
    24、(1)
    (2)75(千米/小时)
    【解析】
    (1)先根据图象和题意知道,甲是分段函数,所以分别设0

    相关试卷

    2024年江苏省南菁高级中学九年级数学第一学期开学达标测试试题【含答案】:

    这是一份2024年江苏省南菁高级中学九年级数学第一学期开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省无锡市南菁中学数学九上开学考试模拟试题【含答案】:

    这是一份2024-2025学年江苏省无锡市南菁中学数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省南菁高中学数学九上期末教学质量检测模拟试题含答案:

    这是一份2023-2024学年江苏省南菁高中学数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了下列各组图形中,一定相似的是,如图等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map