江苏省无锡市祝塘中学2025届九上数学开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,对角线AC=8cm,△AOB是等边三角形,则AD的长为( )cm.
A.4B.6C.4D.3
2、(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( )
A.53°B.37°C.47°D.123°
3、(4分)下列二次根式中,不是最简二次根式的是( )
A.B.C.D.
4、(4分)如果a < b ,则下列式子错误的是( )
A.a +7< b +7B.a ﹣5< b ﹣5
C.﹣3 a <﹣3 bD.
5、(4分)对于函数有以下四个结论,其中正确的结论是( )
A.函数图象必经过点B.函数图象经过第一、二、三象限
C.函数值y随x的增大而增大D.当时,
6、(4分)下列各式从左到右,是因式分解的是( ).
A.(y-1)(y+1)=-1B.
C.(x-2)(x-3)=(3-x)(2-x)D.
7、(4分)某校八(5)班为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终决定买哪些水果.下面的调查数据中您认为最值得关注的是( )
A.中位数B.平均数C.众数D.方差
8、(4分)如图,在的方格纸中,两点在格点上,线段绕某点逆时针旋转角后得到线段,点与对应,则角的大小为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形中,点为边上一点, 和交于点,已知的面积等于6, 的面积等于4,则四边形的面积等于__________.
10、(4分)若y与x的函数关系式为y=2x-2,当x=2时,y的值为_______.
11、(4分)如图,在中,平分,,垂足为点,交于点,为的中点,连结,,,则的长为_____.
12、(4分)如图,一同学在广场边的一水坑里看到一棵树,他目测出自己与树的距离约为20m,树的顶端在水中的倒影距自己约5m远,该同学的身高为1.7m,则树高约为_____m.
13、(4分)如图,菱形的周长为20,对角线的长为6,则对角线的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
(1)点的坐标是________,点的坐标是________;
(2)直线上有一点,若,试求出点的坐标;
(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
15、(8分)为了解初二学生参加户外活动的情况,某县教育局对其中500名初二学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如下统计图。(参加户外活动的时间分为四种类别:“0.5小时”,“1小时”,“1.5小时”,“2小时”)
请根据图示,回答下列问题:
(1)求学生每天户外活动时间的平均数,众数和中位数;
(2)该县共有12000名初二学生,请估计该县每天户外活动时间超过1小时的初二学生有多少人?
16、(8分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.
(1)参加此次研学旅行活动的老师有 人;学生有 人;租用客车总数为 辆;
(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;
(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
17、(10分)已知点分别在菱形的边上滑动(点不与重合),且.
(1)如图1,若,求证:;
(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;
(3)如图3,若,请直接写出四边形的面积.
18、(10分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示
该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量]
(1)该商场计划购进国外品牌、国内品牌两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)据统计,2019年全国高考报名人数达10310000人,比去年增加了560000,其中数据10310000用科学计数法表示为_________
20、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.
21、(4分)计算:3xy2÷=_______.
22、(4分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .
23、(4分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC.则□ABCD的面积是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知分别为平行四边形的边上的点,且.
(1)求证:四边形是平行四边形;
(2)当,且四边形是菱形,求的长.
25、(10分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.
(1)试判定四边形AEDF的形状,并证明你的结论.
(2)若DE=13,EF=10,求AD的长.
(3)△ABC满足什么条件时,四边形AEDF是正方形?
26、(12分)如图,长的楼梯的倾斜角为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为45°,求调整后的楼梯的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先求得∠ACB=30°,再求出AB=4cm,由勾股定理求得AD的长.
【详解】
∵△AOB是等边三角形,
∴∠BAC=60°,
∴∠ACB=30°,
∵AC=8cm,
∴AB=4cm,
在Rt△ABC中,cm,
∵AD=BC,
∴AD的长为4cm.
故选:C.
本题考查的是矩形的性质,关键是根据在直角三角形中,30°的锐角所对的直角边等于斜边的一半;以及勾股定理解答.
2、B
【解析】
设CE与AD相交于点F.
∵在平行四边形ABCD中,过点C的直线CE⊥AB,
∴∠E=90°,
∵∠EAD=53°,
∴∠EFA=90°﹣53°=37°.
∴∠DFC=37°
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠BCE=∠DFC=37°.故选B.
3、C
【解析】
根据最简二次根式的定义对各选项分析判断即可.
【详解】
解:A、是最简二次根式,不合题意,故本选项错误;
B、是最简二次根式,不合题意,故本选项错误;
C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;
D、是最简二次根式,不合题意,故本选项错误;
故选C.
本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.
4、C
【解析】
根据不等式的性质,逐项判断即可.
【详解】
解:∵a<b,∴a+7<b+7,故选项A不符合题意;
∵a<b,∴a-5<b-5,故选项B不符合题意;
∵a<b,∴-3a>-3b,故选项C符合题意;
∵a<b,∴,故选项D不符合题意.
故选:C.
此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
5、D
【解析】
根据一次函数的系数结合一次函数的性质,即可得出选项B、C两选项不正确;再分别代入x=-2,y=0,求出相对于的y和x的值,即可得出选项A不正确,选项D正确.
【详解】
选项A,令y=-2x+1中x=-2,则y=5,
∴一次函数的图象不过点(-2,1),选项A不正确;
选项B,∵k=-2<0,b=1>0,
∴一次函数的图象经过第一、二、四象限,选项B不正确;
选项C,∵k=-2<0,
∴一次函数中y随x的增大而减小,选项C不正确;
选项D,∵令y=-2x+1中y=0,则-2x+1=0,解得:x= ,
∴当x>时,y<0,选项D正确.
故选D.
本题考查了一次函数的图象以及一次函数的性质,熟练运用一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.
6、D
【解析】
解:A、是多项式乘法,不是因式分解,故本选项错误;
B、结果不是积的形式,故本选项错误;
C、不是对多项式变形,故本选项错误;
D、运用完全平方公式分解x2-4x+4=(x-2)2,正确.故选D.
7、C
【解析】
根据平均数、中位数、众数、方差的意义进行分析选择.
【详解】
解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.
既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,
故最值得关注的是众数.
故选:C.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
8、C
【解析】
如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.
【详解】
解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′
∠AOA′即为旋转角,
∴旋转角为90°
故选:C.
考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、11
【解析】
由△ABF的面积等于6, △BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.
【详解】
∵△ABF的面积等于6, △BEF的面积等于4,
∴EF:AF=4:6=2:3,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴△ADF∽△EBF,
∴,
∵S△BEF=4,
∴S△ADF=9,
∴S△ABD=S△ABF+S△AFD=6+9=15,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD是公共边,
∴△BCD≌△DAB,
∴S△BCD=S△DAB=15,
∴S四边形CDFE=S△BCD-S△BEF=15-4=11,
故答案为11.
本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.
10、2
【解析】
将x=2代入函数解析式可得出y的值.
【详解】
由题意得:
y=2×2−2=2.
故答案为:2.
此题考查函数值,解题关键在于将x的值代入解析式.
11、6.5
【解析】
由条件“BF平分∠ABC,AG⊥BF”可判定三角形ABG是等腰三角形(AB=GB),再由条件“E为AC的中点”,可判定DE是三角形AGB的中位线,由此可得GC=2DE,进而可求出BC的长.
【详解】
∵BF平分∠ABC,AG⊥BF,
∴△ABG是等腰三角形,
∴AB=GB=4cm,
∵BF平分∠ABC,
∴AD=DG,
∵E为AC的中点,
∴DE是△AGB的中位线,
∴DE=CG,
∴CG=2DE=5cm,
∴BC=BG+CG=4+2.5=6.5cm,
故答案为6.5
本题考查三角形的性质,解题关键在于判定三角形ABG是等腰三角形
12、5.1.
【解析】
因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形,根据相似三角形的性质解答即可.
【详解】
由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,
故△ABC∽△AED,
由相似三角形的性质,设树高x米,
则,
∴x=5.1m.
故答案为:5.1.
本题考查的是相似三角形的应用,因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形.
13、8
【解析】
利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.
【详解】
如图,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO
∵BD=6,
∴BO=3,
∵周长为20,
∴AB=5,
由勾股定理得:AO==4,
∴AC=8,
故答案为:8
本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)或;(3).
【解析】
(1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;
(2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;
(3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.
【详解】
解:(1)将A(8,0)代入得:,解得:b=6;
∴
令x=0,得:y=6,∴点的坐标为
∵C为AB中点,
∴的坐标为
故答案为:点的坐标为,的坐标为;
(2)或
由题可得S△AOC=
∵
∴S△NOA=
设
S△NOA=
解得:n=6或n=10
将n=6代入得;
将n=10代入得;
∴或
(3)依照题意画出图形,如图所示.
解图1 解图2
∵.
设直线的解析式为,
则有,解得:,
∴直线的解析式为.
∵点在直线上,点在直线上,点的横坐标为,轴,
∴,
当时,;
当时,.
故与的函数解析式为.
本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.
15、(1)平均数是1.24;众数:1;中位数:1;(2)该校每天户外活动时间超过1小时的学生有5280人.
【解析】
分析:(1)根据条形图可得:户外活动的时间分分别为“0.5小时”,“1小时”,“1.5小时”,“2小时”的人数,然后根据平均数,众数和中位数的定义解答即可;(2)先求出500名该县每天户外活动时间超过1小时的初二学生所占的百分比,乘以12000即可.
详解:(1)观察条形统计图,可知这组样本数据的平均数是:
则这组样本数据的平均数是1.24小时.
众数:1小时
中位数:1小时;
(2)被抽查的500名学生中,户外活动时间超过1小时的有220人,
所以 (人)
∴该校每天户外活动时间超过1小时的学生有5280人.
点睛:本题考查的是条形统计图、平均数、众数和中位数的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
16、(1);;;(2);(3)共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;
【解析】
(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;
(2)设用辆乙,则甲种客车数为:辆,代入计算即可
(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.
【详解】
(1)设老师有x名,学生有y名。
依题意,列方程组 ,
解得,
∵每辆客车上至少要有2名老师,
∴汽车总数不能超过8辆;
又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,
综合起来可知汽车总数为8辆;
答:老师有16名,学生有284名;租用客车总数为8辆。
(2)租用辆乙,甲种客车数为:辆,
.
(3)租车总费用不超过元,租用乙种客车不少于辆,
,解得:,
为使名师生都有座,,
解得:,
取整数为.
共有种租车方案:
方案一:租用甲种客车辆,乙种客车辆;
方案二:租用甲种客车辆,乙种客车辆;
方案三:租用甲种客车辆,乙种客车辆;
由(2),随的减小而减小,
且为整数,当时,元,
故最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;
本题考查二元一次方程组的应用,一次函数以及一元一次不等式的应用,正确列出式子是解题关键.
17、(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.
【解析】
(1)根据菱形的性质及已知,得到,再证,
根据三角形全等的性质即可得到结论;
(2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;
(3)根据菱形的面积公式,结合(2)的结论解答.
【详解】
解:(1)∵四边形是菱形,
∴,.
∵,∴,
∴.
∵,∴,∴.
在和中,,
∴,
∴.
(2)若与不垂直,(1)中的结论还成立证明如下:
如图,作,垂足分别为点.
由(1)可得,
∴,
在和中,,
∴,∴.
(3)如图,连接交于点.
∵,∴为等边三角形,
∵,∴,同理,,
∴四边形的面积四边形的面积,
由(2)得四边形的面积四边形AECF的面积
∵,
∴,,
∴四边形的面积为,
∴四边形的面积为.
本题主要考查全等三角形的性质和判定,菱形的性质的应用.主要考查学生的推理能力,证明三角形全等是解题的关键.
18、(1)商场计划购进国外品牌手机20部,国内品牌手机30部;(2)当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
【解析】
(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;
(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.
【详解】
(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:
,
解得,
答:商场计划购进国外品牌手机20部,国内品牌手机30部;
(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:
0.44(20-a)+0.2(30+3a)≤15.6,
解得:a≤5,
设全部销售后获得的毛利润为w万元,由题意,得:
w=0.06(20-a)+0.05(30+3a)=0.09a+2.7,
∵k=0.09>0,
∴w随a的增大而增大,
∴当a=5时,w最大=3.15,
答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.031×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将10310000科学记数法表示为:1.031×1.
故答案为:1.031×1.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
20、
【解析】
根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.
【详解】
解:∵正方形的对角线长为2,
设正方形的边长为x,
∴2x²=(2)²
解得:x=2
∴正方形的边长为:2
故答案为2.
本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.
21、
【解析】
分析:根据分式的运算法则即可求出答案.
详解:原式=3xy2•
=
故答案为.
点睛:本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
22、1。
【解析】
试题分析: ∵四边形ABCD是矩形,
∴OA=OB
又∵∠AOB=60°
∴△AOB是等边三角形.
∴AB=OA=AC=1,
故答案是:1.
考点:含30度角的直角三角形;矩形的性质.
23、1
【解析】
先根据平行四边形的性质求出BC的长,再根据勾股定理及三角形的面积公式解答即可.
【详解】
根据平行四边形的性质得AD=BC=8
在Rt△ABC中,AB=10,AD=8,AC⊥BC
根据勾股定理得AC==6,
则S平行四边形ABCD=BC•AC=1,
故答案为:1.
本题考查了平行四边形的对边相等的性质和勾股定理,正确求出AC的长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)10
【解析】
(1)首先由已知证明AM∥NC,BN=DM,推出四边形AMCN是平行四边形.
(2)由已知先证明AN=BN,即BN=AN=CN,从而求出BN的长.
【详解】
(1)证明:四边形是平行四边形,
又.
即,
,
四边形是平行四边形;
(2)四边形是菱形,
,
又,
即,
,
,
.
此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.
25、(1)四边形AEDF是菱形,证明见解析;(2)24;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
【解析】
(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故AO=AD=4,根据勾股定理得EO=3,从而得到EF=6;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.
【详解】
(1)四边形AEDF是菱形,
∵AD平分∠BAC,
∴∠1=∠2,
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中
∵,
∴△AEO≌△AFO(ASA),
∴EO=FO,
∵EF垂直平分AD,
∴EF、AD相互平分,
∴四边形AEDF是平行四边形
又EF⊥AD,
∴平行四边形AEDF为菱形;
(2)∵EF垂直平分AD,AD=8,
∴∠AOE=90°,AO=4,
在RT△AOE中,∵AE=5,
∴EO==3,
由(1)知,EF=2EO=6;
(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
∵∠BAC=90°,
∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).
本题考查了菱形的判定和正方形的判定,解题的关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.
26、
【解析】
在中,,
∴
∴,
∴
在中,,
∴
∴.
题号
一
二
三
四
五
总分
得分
批阅人
国外品牌
国内品牌
进价(万元/部)
0.44
0.2
售价(万元/部)
0.5
0.25
2025届江苏省无锡市藕塘中学九上数学开学达标检测试题【含答案】: 这是一份2025届江苏省无锡市藕塘中学九上数学开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省无锡市东湖塘中学数学九上开学检测试题【含答案】: 这是一份2024年江苏省无锡市东湖塘中学数学九上开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。