2025届江苏无锡市塔影中学数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为( )
A.B.C.D.
2、(4分)化简的结果是( )
A.5B.-5C.±5D.25
3、(4分)如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是( ).
A.x2B.x2或1x0
C.1x0D.x2或x1
4、(4分)下列各组数据中,能作为直角三角形三边长的是( )
A.4,5,6B.5,12,13C.6,7,8D.8,9,10
5、(4分)一元二次方程x2﹣8x+20=0的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
6、(4分)一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)与放水时间t(分)有如下关系:
下列结论中正确的是
A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3
C.每分钟的放水量是2m3D.y与t之间的关系式为y=38-2t
7、(4分)式子有意义,则实数a的取值范围是( )
A.a≥-1B.a≠2C.a≥-1且a≠2D.a>2
8、(4分)如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是( )
A.当销售量为4台时,该公司赢利4万元B.当销售量多于4台时,该公司才开始赢利
C.当销售量为2台时,该公司亏本1万元D.当销售量为6台时,该公司赢利1万元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________
10、(4分)已知:函数,,若,则__________(填“”或“”或 “”).
11、(4分)某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.
12、(4分)函数与的图象恰有两个公共点,则实数的取值范围是_______.
13、(4分)已知Rt△ABC中,AB=3,AC=4,则BC的长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在中,,,是的角平分线,过点作于点,将绕点旋转,使的两边交直线于点,交直线于点,请解答下列问题:
(1)当绕点旋转到如图1的位置,点在线段上,点在线段上时,且满足.
①请判断线段、、之间的数量关系,并加以证明
②求出的度数.
(2)当保持等于(1)中度数且绕点旋转到图2的位置时,若,,求的面积.
15、(8分)计算:
(1);
(2)已知,求的值.
16、(8分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.
(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;
(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.
17、(10分)如图,平面直角坐标系中,反比例函数y1=的图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).
(1)求反比例函数解析式;
(2)当y2>y1时,求x的取值范围.
18、(10分)如图,△ABC与△A′B′C′是位似图形,且位似比是1:1.
(1)在图中画出位似中心点O;
(1)若AB=1cm,则A′B′的长为多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在R△ABC中,∠ABC=90°,AB=2,BC=1,BD是AC边上的中线,则BD= ________。
20、(4分)方程-x=1的根是______
21、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
22、(4分)点P的坐标为,则点P到x轴的距离是________,点P到y轴的距离是________.
23、(4分)如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°, PD⊥OA,M是OP的中点, DM=4cm,如果点C是OB上一个动点,则PC的最小值为________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y与x+2 成正比例,当x=4时,y=12.
(1)写出y与x之间的函数解析式;
(2)求当y=36时x的值;
(3)判断点(-7,-10)是否是函数图象上的点.
25、(10分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打______个字.
26、(12分)佳佳商场卖某种衣服每件的成本为元,据销售人员调查发现,每月该衣服的销售量(单位:件)与销售单价(单位:元/件)之间存在如图中线段所示的规律:
(1)求与之间的函数关系式,并写出的取值范围;
(2)若某月该商场销售这种衣服获得利润为元,求该月这种衣服的销售单价为每件多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
解:∵点A(m+4,m)在平角直角坐标系的x轴上,∴m=0,∴点A(4,0),∴点A关于y轴对称点的坐标为(-4,0).故选A.
2、A
【解析】
根据开平方的运算法则计算即可.
【详解】
解:==5,
故选:A.
本题考查了开平方运算,关键是掌握基本的运算法则.
3、B
【解析】
根据交点坐标及图象的高低即可判断取值范围.
【详解】
要使,则一次函数的图象要高于反比例函数的图象,
∵两图象交于点A(2,1)、B(-1,-2),
∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,
∴使的x的取值范围是:或.
故选:B.
本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.
4、B
【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
【详解】
A、∵42+52=41≠62,
∴不能作为直角三角形三边长,故本选项错误;
B、∵52+122=169=132,
∴能作为直角三角形三边长,故本选项正确;
C、∵62+72=85≠82,
∴不能作为直角三角形三边长,故本选项错误;
D、∵82+92=141≠102,
∴不能作为直角三角形三边长,故本选项错误.
故选B.
本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
5、A
【解析】
先计算出△,然后根据判别式的意义求解.
【详解】
∵△=(-8)2-4×20×1=-16<0,
∴方程没有实数根.
故选A.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
6、C
【解析】
根据表格内的数据,利用待定系数法求出y与t之间的函数关系式,由此可得出D选项错误;由-2<0可得出y随t的增大而减小,A选项错误;代入t=15求出y值,由此可得出:放水时间为15分钟时,水池中水量为10m3,B选项错误;由k=-2可得出每分钟的放水量是2m3,C选项正确.综上即可得出结论.
【详解】
解:设y与t之间的函数关系式为y=kt+b,
将(1,38)、(2,36)代入y=kt+b,
,解得:
∴y与t之间的函数关系式为y=-2t+40,D选项错误;
∵-2<0,
∴y随t的增大而减小,A选项错误;
当t=15时,y=-2×15+40=10,
∴放水时间为15分钟时,水池中水量为10m3,B选项错误;
∵k=-2,
∴每分钟的放水量是2m3,C选项正确.
故选:C.
本题考查一次函数的应用,利用待定系数法求出函数关系式是解题的关键.
7、C
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可.
【详解】
解:由题意得,
解得,a≥-1且a≠2,
故答案为:C.
本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.
8、A
【解析】
利用图象交点得出公司盈利以及公司亏损情况.
【详解】
解:A、当销售量为4台时,该公司赢利0万元,错误;
B、当销售量多于4台时,该公司才开始赢利,正确;
C、当销售量为2台时,该公司亏本1万元,正确;
D、当销售量为6台时,该公司赢利1万元,正确;
故选A.
此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、0.3
【解析】
根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.
【详解】
解:∵第1、2、3、4组的频数分别是2、8、10、15,
∴50-2-8-10-15=15
∴15÷50=0.3
故答案为0.3.
此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.
10、<
【解析】
联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.
【详解】
根据题意联立方程组得,
解得,,
画函数图象得,
所以,当,则<.
故答案为:<.
本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.
11、2
【解析】
设至少答对x道题,总分才不会低于1,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于2分,可列不等式求解.
【详解】
解:设至少答对x道题,总分才不会低于1,
根据题意,得
5x-3(20-x-3)≥2,
解之得x≥14.5.
答:至少答对2道题,总分才不会低于1.
故答案是:2.
本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.
12、或
【解析】
画图象用数形结合解题,y=m|x|的图在x轴上过原点是折线,关于y轴对称;m>0时,y=x+m斜率为1,与y=m|x|交于第一、二象限,m<0时,y=x+m斜率为1,与y=m|x|交于第三、四象限,分析图象可得答案.
【详解】
根据题意,y=m|x|的图在x轴上过原点是折线,关于y轴对称;
分两种情况讨论,①m>0时,过第一、二象限,y=x+a斜率为1,m>0时,过第一、二、三象限,若使其图象恰有两个公共点,必有m>1;
②m<0时,y=m|x|过第三、四象限;而y=x+m过第二、三、四象限;若使其图象恰有两个公共点,必有m<−1;
故答案为:或
此题考查两条直线相交或平行问题,解题关键在于分情况讨论
13、或1.
【解析】
根据勾股定理来进行解答即可,本题需要分两种情况进行计算,即BC为斜边和BC为直角边.
【详解】
根据勾股定理可得:AB=
或AB=,
故答案为1或.
本题主要考查的是利用勾股定理求边长的问题,属于基础问题.在利用勾股定理时一定要注意所求的边为直角边还是斜边.
三、解答题(本大题共5个小题,共48分)
14、 (1)①,理由见解析;②;(2) .
【解析】
(1)①根据角平分线的性质得到根据全等三角形的性质和判定即可得到答案;
②根据全等三角形的性质即可得到答案;
(2) 根据全等三角形的性质和判定即可得到答案;
【详解】
(1)①
∵
∴,
∵平分
∴
又∵
∴
∴
∵中,
∴
∴
∴
∴
∵
∴
②∵
∴
∴
∵
∴
∴
(2)∵
∴
又∵
∴
∴
∵
∴
∴
设,则
∵,∴
∴,
∴
∴
∴
∴
∴
∴
本题考查角平分线的性质、全等三角形的性质和判定,解题的关键是掌握角平分线的性质、全等三角形的性质和判定.
15、 (1)2+;(2)9-6.
【解析】
(1)先进行二次根式的乘除法,然后化简,最后合并即可;
(2)将所求式子进行变形,然后再将x、y值代入进行计算即可.
【详解】
(1)原式=()-
=2+
=2+;
(2)∵,
∴
=(x-y)2+xy-3(x+y)
=()2+()()-3()
=8+3-2-6
=9-6.
本题主要考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
16、(1)7800元;(2)购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
【解析】
(1)购买温馨提示牌的费用+购买垃圾箱的费用即为所需的购买费用
(2)温馨提示牌为x个,则垃圾箱为(100-x)个,根据该小区至多安放48个温馨提示牌,且费用不超过6300元,建立不等式组,根据为整数可得到4种购买方案.
【详解】
(1)(元)
答:所需的购买费用为7800元 .
(2)设温馨提示牌为x个,则垃圾箱为(100-x)个,由题意得:
,
解得:
∵为整数
∴
∴购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
本题主要考查一元一次不等式组的应用以及方案问题,读懂题目,找出题目中的不等关系列出不等式是解题的关键.
17、(1)反比例函数的解析式为y=;(1)﹣1<x<0或x>1.
.
【解析】
(1)利用待定系数法即可解决问题;
(1)根据对称性确定点C坐标,观察图象,y1的图象在y1的图象上方的自变量的取值,即为所求.
【详解】
(1)∵反比例函数y1=经过点A(1,1),
∴k=1,
∴反比例函数的解析式为y=;
(1)根据对称性可知:A、C关于原点对称,可得C(﹣1,﹣1),
观察图象可知,当y1>y1时,x的取值范围为﹣1<x<0或x>1.
本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.
18、(1)见解析;(1)的长为
【解析】
(1)根据位似图形的性质直接得出位似中心即可;
(1)利用位似比得出对应边的比进而得出答案.
【详解】
解:(1)如图所示:连接BB′、CC′,它们的交点即为位似中心O;
(1)∵△ABC与△A′B′C′是位似图形,且位似比是1:1,
AB=1cm,
∴A′B′的长为4 cm.
此题主要考查了位似图形的性质,利用位似比等于对应边的比得出是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.5
【解析】
利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.
【详解】
解:在Rt△ABC中,
AC=
∵ BD是AC边上的中线,
∴AC=2BD
∴BD=3÷2=1.5
故答案为:1.5
本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
20、x=3
【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
【详解】
解:整理得:=x+1,
方程两边平方,得:2x+10=x2+2x+1,
移项合并同类项,得:x2=9,
解得:x1=3,x2=-3,
经检验,x2=-3不是原方程的解,
则原方程的根为:x=3.
故答案为:x=3.
本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
21、150km/h
【解析】
假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
【详解】
解:设快车的速度为a(km/h),慢车的速度为b(km/h),
∴4(a+b)=900,
∵慢车到达甲地的时间为12小时,
∴12b=900,
b=75,
∴4(a+75)=900,
解得:a=150;
∴快车的速度为150km/h.
故答案为:150km/h.
此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
22、2 1
【解析】
根据在平面直角坐标系中,任何一点到x轴的距离等于这一点纵坐标的绝对值,到y轴的距离等于这一点横坐标的绝对值,即可解答本题.
【详解】
解:点P的坐标为,则点P到x轴的距离是2,点P到y轴的距离是1.
故答案为2;1.
本题考查在平面直角坐标系中,点到坐标轴的距离,比较简单.
23、1
【解析】
根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.
【详解】
是角平分线上的一点,,
,
,M是OP的中点,,
,
,
点C是OB上一个动点,
的最小值为P到OB距离,
的最小值,
故答案为1.
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)y=2(x+2)=2x+4;
(2)x=16;
(3)点(-7,-10)是函数图象上的点.
【解析】(1)利用待定系数法即可求出答案;
(2)把y=36代入(1)中所求的函数解析式中即可得出x的值;
(3)把x=-7代入(1)中所求的函数解析式中即可判断出答案.
解:(1)设y=k(x+2).
∵x=4,y=12,
∴6k=12.
解得k=2.
∴y=2(x+2)=2x+4.
(2)当y=36时,2x+4=36,
解得x=16.
(3)当x=-7时,y=2×(-7)+4=-10,
∴点(-7,-10)是函数图象上的点.
25、45
【解析】
设乙每分钟打字x个,甲每分钟打个,根据题意可得:,去分母可得:
,解得,经检验可得:,故答案为:45.
26、(1);(2)该月这种衣服的销售单价为每件元
【解析】
(1)根据点的坐标,利用待定系数法可求出每月销售量y与销售单价x之间的函数关系式;
(2)根据总利润=每千克的利润×月销售数量,即可得出关于x的一元二次方程,解之即可得出结论.
【详解】
解:(1)依题意可设,
由图像得:点都在的图像上,
,
与之间的函数关系式:,
由图象得,的取值范围:;
(2)依题意得:,
,
解得: (舍去);
∴该月这种衣服的销售单价为每件元.
本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
题号
一
二
三
四
五
总分
得分
批阅人
放水时间(分)
1
2
3
4
...
水池中水量(m)
38
36
34
32
...
2024年江苏省无锡市阳山中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年江苏省无锡市阳山中学数学九上开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省无锡市塔影中学九上数学开学调研试题【含答案】: 这是一份2024年江苏省无锡市塔影中学九上数学开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】: 这是一份2024年江苏省无锡市南菁高级中学数学九上开学考试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。