2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】
展开这是一份2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知反比例函数,下列结论不正确的是( ).
A.该函数图像经过点(-1,1)B.该函数图像在第二、四象限
C.当x<0时,y随x增大而减小D.当x>1时,
2、(4分)某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是( )
A.B.C.D.
3、(4分)如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为( )
A.B.C.D.
4、(4分)小颖从家出发,走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,图(3)中表示小颖离家时间x与距离y之间的关系正确的是( )
A.B.C.D.
5、(4分)分式 可变形为( )
A. B. C. D.
6、(4分)如图,一个长为2、宽为1的长方形以下面的“姿态”从直线的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )
A.1B.2C.3D.
7、(4分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是( )
A.B.C.D.
8、(4分)下列各多项式能进行因式分解的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的一元二次方程(k﹣1)x2+3x﹣1=0有实数根,则k的取值范围是_____.
10、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.
11、(4分)因式分解:x2﹣x=______.
12、(4分)将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.
13、(4分)如图,已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则关于x的不等式ax+b≤kx<1的解集为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
15、(8分)(1)如图,在平行四边形中,过点作 于点 ,交 于点 ,过点 作 于点 ,交 于点 .
①求证:四边形 是平行四边形;
②已知,求的长.
(2)已知函数.
①若函数图象经过原点,求的值
②若这个函数是一次函数,且随着的增大而减小,求的取值范围
16、(8分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.
若,,依题意补全图1,并直接写出的度数;
如图2,若是钝角,求的度数用含,的式子表示;
如图3,若,直接写出的度数用含,的式子表示.
17、(10分)有下列命题
①一组对边平行,一组对角相等的四边形是平行四边形.
②两组对角分别相等的四边形是平行四边形.
③一组对边相等,一组对角相等的四边形是平行四边形.
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
(1)上述四个命题中,是真命题的是 (填写序号);
(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
已知: .
求证: .
证明:
18、(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420 km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h,求汽车原来的平均速度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.
20、(4分)反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
21、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.
22、(4分)如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;
23、(4分)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数y=kx+b的图象与直线y=﹣2x+1的交点M的横坐标为1,与直线y=x﹣1的交点N的纵坐标为2,求这个一次函数的解析式.
25、(10分)A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.
(1)写出总运费y元关于x的之间的关系式;
(2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?
(3)怎样调运化肥,可使总运费最少?最少运费是多少?
26、(12分)ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
∵∴A是正确的;反比例函数k=-1,图象在第二、四象限上,∴B是正确的;当x<0时,图象在第二象限上,y随着x的增大而增大,∴C是错误的;当x>l时, ∴D是正确的.故选C
2、C
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:数据1出现了10次,次数最多,所以众数为1,
一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
故选:C.
本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.
3、D
【解析】
过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.
【详解】
解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴
∴CE∥AD,∠CEO=∠BFO=90°
∵
∴∠COE+∠FOB=90°,∠ECO+∠COE=90°
∴∠ECO=∠FOB
∴△COE∽△OBF∽△AOD
又∵,
∴,
∴,
∴
∵点在反比例函数的图象上
∴
∴
∴,解得k=±8
又∵反比例函数位于第二象限,
∴k=-8
故选:D.
本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.
4、A
【解析】
在0—20分钟,小颖从家出发到图书室的过程,随着时间x的改变,距离y越来越大;20—60分钟,小颖在看书,所以随着时间x的改变,距离y不变;60—75分钟,小颖返回家,所以随着时间x的改变,距离y变小.所以答案选A.
5、D
【解析】
根据分式的性质,可化简变形.
【详解】
.
故答案为:D
考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.
6、C
【解析】
根据平移的性质即可解答.
【详解】
如图连接,根据平行线的性质得到∠1=∠2,
如图,平移的距离的长度
故选C.
此题考查平移的性质,解题关键在于利用平移的性质求解.
7、C
【解析】
根据正比例函数与一次函数的图象性质作答.
【详解】
解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;
当1<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;
当k<1时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<1,所以两函数交点的横坐标小于1.
故选:C.
本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.
8、C
【解析】
利用平方差公式及完全平方公式的结构特征进行判断即可.
【详解】
A. 不能进行因式分解;
B. 不能进行因式分解;
C. 可以分解为(x+1)(x-1),故正确;
D. 不能进行因式分解.
本题考查因式分解,解题的关键是掌握因式分解的方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、且
【解析】
试题解析:由题意知,
∵方程有实数根,
∴且
故答案为且
10、1﹣1
【解析】
取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.
【详解】
如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.
∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.
∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.
∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.
故答案为11.
本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.
11、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
12、
【解析】
先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.
【详解】
解:直线向右平移个单位后的解析式为,
令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,
所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),
所以直线与坐标轴所围成的三角形面积是.
故答案为:.
本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.
13、﹣4≤x<1
【解析】
先利用待定系数法求出y=kx的表达式,然后求出y=1时对应的x值,再根据函数图象得出结论即可.
【详解】
解:∵已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣1),
∴﹣4k=﹣1,
解得:k=,
∴解析式为y=x,
当y=1时,x=1,
∵由函数图象可知,当x≥﹣4时一次函数y=ax+b在一次函数y=kx图象的下方,
∴关于x的不等式ax+b≤kx<1的解集是﹣4≤x<1.
故答案为:﹣4≤x<1.
本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、57+12﹣
【解析】
试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.
试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)
=(12+12+45)﹣(6﹣2+2﹣5)
=(57+12﹣)(cm2).
考点:二次根式的应用
15、(1)①详见解析;②13;(2)①m=3;②
【解析】
(1)①只要证明DN∥BM,DM∥BN即可;
②只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;
(2)①根据待定系数法,只需把原点代入即可求解;
②直线y=kx+b中,y随x的增大而减小说明k<1.
【详解】
(1)①ABCD是平行四边形,
又 ,
∴DN∥BM,
∴四边形 是平行四边形;
②解:∵四边形BMDN是平行四边形,
∴DM=BN,
∵CD=AB,CD∥AB,
∴CM=AN,∠MCE=∠NAF,
∵∠CEM=∠AFN=91°,
∴△CEM≌△AFN(AAS),
∴FN=EM=5,
在Rt△AFN中,CM=;
(2)①,∵函数图象经过原点
代入解析式, 即m-3=1,m=3;
②根据y随x的增大而减小说明k<1,
即:
解得:
∴的取值范围是:.
本题考查一次函数的性质,平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
16、(1)补图见解析,;(2) ;(3) .
【解析】
(1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;
(2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;
(3)求出∠DAE度数,根据平行线的性质求出即可.
【详解】
解:如图1,
,,
,
是的平分线,
,
,
,
,
,
,
,
;
如图2,
中,,
.
,
是的平分线,
,
,
,
,
,
,
,
;
如图3,
中,,
,
,
是的平分线,
,
,
,
,
,
.
本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.
17、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形
【解析】
(1)根据平行线的判定定理写出真命题;
(2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.
【详解】
(1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;
②两组对角分别相等的四边形是平行四边形.故正确;
③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.
故答案是:①②④;
(2)以②为例:
已知:在四边形ABCD中,∠A=∠C,∠B=∠D,
求证:四边形ABCD是平行四边形.
证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,
∴∠1+∠2=∠2+∠1.①
∵∠ABC=∠ADC,
即∠1+∠2=∠2+∠1,②
由①②相加、相减得:∠1=∠1,∠2=∠2.
∴AB∥CD,AD∥BC.
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.
本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.
18、2 km/h
【解析】
求的汽车原来的平均速度,路程为410km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了1h.等量关系为:原来时间﹣现在时间=1.
【详解】
设汽车原来的平均速度是x km/h,根据题意得:
,解得:x=2.
经检验:x=2是原方程的解.
答:汽车原来的平均速度2km/h.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、12.
【解析】
因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.
【详解】
解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;
∴顶角的度数为80°或20°.
故答案为80°或20°.
本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.
20、.
【解析】
根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.
【详解】
解:反比例函数y=图象在一、三象限,
(x1,y1),(x2,y2)在反比例函数y=图象上,且,
因此(x1,y1),(x2,y2)在第一象限,
∵反比例函数y=在第一象限y随x的增大而减小,
∴,
故答案为:.
本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.
21、1
【解析】
由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
【详解】
解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;
甲车10:00到达B城,乙车9:00到达B城;
乙车的平均速度为:300÷(9-6)=100(km/h),
当乙车7:30时,乙车离A的距离为:100×1.5=150(km),
∴点A(7.5,150),
由图可知点B(5,0),
设甲的函数解析式为:y=kt+b,
把点A(7.5,150),B(5,0)代入y=kt+b得:
,
解得:,
∴甲的函数解析式为:y=1t-300,
当t=9时,y=1×9-300=240,
∴9点时,甲距离开A的距离为240km,
∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
故答案为:1.
本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.
22、8
【解析】
∵四边形ABCD是平行四边形,
∴O是BD中点,△ABD≌△CDB,
又∵E是CD中点,
∴OE是△BCD的中位线,
∴OE=BC,
即△DOE的周长=△BCD的周长,
∴△DOE的周长=△DAB的周长.
∴△DOE的周长=×16=8cm.
23、1
【解析】
由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.
【详解】
∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,
∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,
∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,
故答案为:1.
本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、y=x﹣.
【解析】
依据条件求得交点M的坐标是(1,﹣1),交点N的坐标是(3,2),再根据待定系数法即可得到一次函数的解析式.
【详解】
解:把x=1代入y=﹣2x+1中,可得y=﹣1,
故交点M的坐标是(1,﹣1);
把y=2代入y=x﹣1中,得x=3,
故交点N的坐标是(3,2),
设这个一次函数的解析式是y=kx+b,
把(1,﹣1),(3,2)代入,可得,
解得,
故所求函数的解析式是y=x﹣.
本题考查了两直线相交的问题,解题的关键是理解交点是两条直线的公共点.
25、(1)y=4x+10040(0≤x≤200);(2)从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
【解析】
(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;
(2)将y=10200代入(1)中的函数关系式可求得x的值;
(3)根据(1)的解析式,由一次函数的性质就可以求出结论.
【详解】
(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为
y=20x+25(200-x)+15(240-x)+24(60+x)
化简,得y=4x+10040(0≤x≤200)
(2)将y=10200代入得:4x+10040=10200,解得:x=40,
∴200-x=200-40=160,240-x=200,60+x=100,
∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.
(3)∵y=4x+10040,
∴k=4>0,
∴y随x的增大而增大,
∴当x=0时,y最小=10040
∴从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
本题考查了一次函数的解析式的运用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.
26、(1)见解析;(2)1
【解析】
(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)由平行线和角平分线定义得出∠DFA=∠DAF,证出AD=DF=5,由勾股定理求出DE==4,即可得出矩形BFDE的面积.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)解:∵AB∥CD,
∴∠BAF=∠DFA,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∴∠DFA=∠DAF,
∴AD=DF=5,
∵DE⊥AB,
∴∠AED=90°,
由勾股定理得:DE==4,
∴矩形BFDE的面积=DF×DE=5×4=1.
本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
题号
一
二
三
四
五
总分
得分
尺码数
人数
相关试卷
这是一份2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省金坛市尧塘中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了已知A样本的数据如下,下列判断正确的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省金坛市尧塘,河头,水北中学九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了抛物线的顶点坐标是,在平面直角坐标系中,以点,下列函数中,图象不经过点等内容,欢迎下载使用。