终身会员
搜索
    上传资料 赚现金

    2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】

    立即下载
    加入资料篮
    2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】第1页
    2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】第2页
    2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】

    展开

    这是一份2024年江苏省金坛市尧塘中学数学九上开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知反比例函数,下列结论不正确的是( ).
    A.该函数图像经过点(-1,1)B.该函数图像在第二、四象限
    C.当x<0时,y随x增大而减小D.当x>1时,
    2、(4分)某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是( )
    A.B.C.D.
    3、(4分)如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为( )
    A.B.C.D.
    4、(4分)小颖从家出发,走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,图(3)中表示小颖离家时间x与距离y之间的关系正确的是( )
    A.B.C.D.
    5、(4分)分式 可变形为( )
    A. B. C. D.
    6、(4分)如图,一个长为2、宽为1的长方形以下面的“姿态”从直线的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )
    A.1B.2C.3D.
    7、(4分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是( )
    A.B.C.D.
    8、(4分)下列各多项式能进行因式分解的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于x的一元二次方程(k﹣1)x2+3x﹣1=0有实数根,则k的取值范围是_____.
    10、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.
    11、(4分)因式分解:x2﹣x=______.
    12、(4分)将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.
    13、(4分)如图,已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则关于x的不等式ax+b≤kx<1的解集为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
    15、(8分)(1)如图,在平行四边形中,过点作 于点 ,交 于点 ,过点 作 于点 ,交 于点 .
    ①求证:四边形 是平行四边形;
    ②已知,求的长.
    (2)已知函数.
    ①若函数图象经过原点,求的值
    ②若这个函数是一次函数,且随着的增大而减小,求的取值范围
    16、(8分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.
    若,,依题意补全图1,并直接写出的度数;
    如图2,若是钝角,求的度数用含,的式子表示;
    如图3,若,直接写出的度数用含,的式子表示.
    17、(10分)有下列命题
    ①一组对边平行,一组对角相等的四边形是平行四边形.
    ②两组对角分别相等的四边形是平行四边形.
    ③一组对边相等,一组对角相等的四边形是平行四边形.
    ④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
    (1)上述四个命题中,是真命题的是 (填写序号);
    (2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
    已知: .
    求证: .
    证明:
    18、(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420 km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h,求汽车原来的平均速度.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.
    20、(4分)反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
    21、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.
    22、(4分)如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;
    23、(4分)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知一次函数y=kx+b的图象与直线y=﹣2x+1的交点M的横坐标为1,与直线y=x﹣1的交点N的纵坐标为2,求这个一次函数的解析式.
    25、(10分)A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.
    (1)写出总运费y元关于x的之间的关系式;
    (2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?
    (3)怎样调运化肥,可使总运费最少?最少运费是多少?
    26、(12分)ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.
    (1)求证:四边形BFDE是矩形;
    (2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    ∵∴A是正确的;反比例函数k=-1,图象在第二、四象限上,∴B是正确的;当x<0时,图象在第二象限上,y随着x的增大而增大,∴C是错误的;当x>l时, ∴D是正确的.故选C
    2、C
    【解析】
    众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    解:数据1出现了10次,次数最多,所以众数为1,
    一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
    故选:C.
    本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.
    3、D
    【解析】
    过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.
    【详解】
    解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴
    ∴CE∥AD,∠CEO=∠BFO=90°

    ∴∠COE+∠FOB=90°,∠ECO+∠COE=90°
    ∴∠ECO=∠FOB
    ∴△COE∽△OBF∽△AOD
    又∵,
    ∴,
    ∴,

    ∵点在反比例函数的图象上


    ∴,解得k=±8
    又∵反比例函数位于第二象限,
    ∴k=-8
    故选:D.
    本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.
    4、A
    【解析】
    在0—20分钟,小颖从家出发到图书室的过程,随着时间x的改变,距离y越来越大;20—60分钟,小颖在看书,所以随着时间x的改变,距离y不变;60—75分钟,小颖返回家,所以随着时间x的改变,距离y变小.所以答案选A.
    5、D
    【解析】
    根据分式的性质,可化简变形.
    【详解】
    .
    故答案为:D
    考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.
    6、C
    【解析】
    根据平移的性质即可解答.
    【详解】
    如图连接,根据平行线的性质得到∠1=∠2,
    如图,平移的距离的长度
    故选C.
    此题考查平移的性质,解题关键在于利用平移的性质求解.
    7、C
    【解析】
    根据正比例函数与一次函数的图象性质作答.
    【详解】
    解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;
    当1<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;
    当k<1时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<1,所以两函数交点的横坐标小于1.
    故选:C.
    本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.
    8、C
    【解析】
    利用平方差公式及完全平方公式的结构特征进行判断即可.
    【详解】
    A. 不能进行因式分解;
    B. 不能进行因式分解;
    C. 可以分解为(x+1)(x-1),故正确;
    D. 不能进行因式分解.
    本题考查因式分解,解题的关键是掌握因式分解的方法.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、且
    【解析】
    试题解析:由题意知,
    ∵方程有实数根,

    ∴且
    故答案为且
    10、1﹣1
    【解析】
    取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.
    【详解】
    如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.
    ∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.
    ∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.
    ∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.
    故答案为11.
    本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.
    11、x(x﹣1)
    【解析】分析:提取公因式x即可.
    详解:x2−x=x(x−1).
    故答案为:x(x−1).
    点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
    12、
    【解析】
    先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.
    【详解】
    解:直线向右平移个单位后的解析式为,
    令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,
    所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),
    所以直线与坐标轴所围成的三角形面积是.
    故答案为:.
    本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.
    13、﹣4≤x<1
    【解析】
    先利用待定系数法求出y=kx的表达式,然后求出y=1时对应的x值,再根据函数图象得出结论即可.
    【详解】
    解:∵已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣1),
    ∴﹣4k=﹣1,
    解得:k=,
    ∴解析式为y=x,
    当y=1时,x=1,
    ∵由函数图象可知,当x≥﹣4时一次函数y=ax+b在一次函数y=kx图象的下方,
    ∴关于x的不等式ax+b≤kx<1的解集是﹣4≤x<1.
    故答案为:﹣4≤x<1.
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、57+12﹣
    【解析】
    试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.
    试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)
    =(12+12+45)﹣(6﹣2+2﹣5)
    =(57+12﹣)(cm2).
    考点:二次根式的应用
    15、(1)①详见解析;②13;(2)①m=3;②
    【解析】
    (1)①只要证明DN∥BM,DM∥BN即可;
    ②只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;
    (2)①根据待定系数法,只需把原点代入即可求解;
    ②直线y=kx+b中,y随x的增大而减小说明k<1.
    【详解】
    (1)①ABCD是平行四边形,
    又 ,
    ∴DN∥BM,
    ∴四边形 是平行四边形;
    ②解:∵四边形BMDN是平行四边形,
    ∴DM=BN,
    ∵CD=AB,CD∥AB,
    ∴CM=AN,∠MCE=∠NAF,
    ∵∠CEM=∠AFN=91°,
    ∴△CEM≌△AFN(AAS),
    ∴FN=EM=5,
    在Rt△AFN中,CM=;
    (2)①,∵函数图象经过原点
    代入解析式, 即m-3=1,m=3;
    ②根据y随x的增大而减小说明k<1,
    即:
    解得:
    ∴的取值范围是:.
    本题考查一次函数的性质,平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、(1)补图见解析,;(2) ;(3) .
    【解析】
    (1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;
    (2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;
    (3)求出∠DAE度数,根据平行线的性质求出即可.
    【详解】
    解:如图1,
    ,,

    是的平分线,








    如图2,
    中,,


    是的平分线,








    如图3,
    中,,


    是的平分线,






    本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.
    17、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形
    【解析】
    (1)根据平行线的判定定理写出真命题;
    (2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.
    【详解】
    (1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;
    ②两组对角分别相等的四边形是平行四边形.故正确;
    ③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;
    ④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.
    故答案是:①②④;
    (2)以②为例:
    已知:在四边形ABCD中,∠A=∠C,∠B=∠D,
    求证:四边形ABCD是平行四边形.
    证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,
    ∴∠1+∠2=∠2+∠1.①
    ∵∠ABC=∠ADC,
    即∠1+∠2=∠2+∠1,②
    由①②相加、相减得:∠1=∠1,∠2=∠2.
    ∴AB∥CD,AD∥BC.
    ∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
    故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.
    本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.
    18、2 km/h
    【解析】
    求的汽车原来的平均速度,路程为410km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了1h.等量关系为:原来时间﹣现在时间=1.
    【详解】
    设汽车原来的平均速度是x km/h,根据题意得:
    ,解得:x=2.
    经检验:x=2是原方程的解.
    答:汽车原来的平均速度2km/h.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、12.
    【解析】
    因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.
    【详解】
    解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
    当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;
    ∴顶角的度数为80°或20°.
    故答案为80°或20°.
    本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.
    20、.
    【解析】
    根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.
    【详解】
    解:反比例函数y=图象在一、三象限,
    (x1,y1),(x2,y2)在反比例函数y=图象上,且,
    因此(x1,y1),(x2,y2)在第一象限,
    ∵反比例函数y=在第一象限y随x的增大而减小,
    ∴,
    故答案为:.
    本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.
    21、1
    【解析】
    由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
    【详解】
    解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;
    甲车10:00到达B城,乙车9:00到达B城;
    乙车的平均速度为:300÷(9-6)=100(km/h),
    当乙车7:30时,乙车离A的距离为:100×1.5=150(km),
    ∴点A(7.5,150),
    由图可知点B(5,0),
    设甲的函数解析式为:y=kt+b,
    把点A(7.5,150),B(5,0)代入y=kt+b得:

    解得:,
    ∴甲的函数解析式为:y=1t-300,
    当t=9时,y=1×9-300=240,
    ∴9点时,甲距离开A的距离为240km,
    ∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
    故答案为:1.
    本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.
    22、8
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴O是BD中点,△ABD≌△CDB,
    又∵E是CD中点,
    ∴OE是△BCD的中位线,
    ∴OE=BC,
    即△DOE的周长=△BCD的周长,
    ∴△DOE的周长=△DAB的周长.
    ∴△DOE的周长=×16=8cm.
    23、1
    【解析】
    由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.
    【详解】
    ∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,
    ∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,
    ∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,
    故答案为:1.
    本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、y=x﹣.
    【解析】
    依据条件求得交点M的坐标是(1,﹣1),交点N的坐标是(3,2),再根据待定系数法即可得到一次函数的解析式.
    【详解】
    解:把x=1代入y=﹣2x+1中,可得y=﹣1,
    故交点M的坐标是(1,﹣1);
    把y=2代入y=x﹣1中,得x=3,
    故交点N的坐标是(3,2),
    设这个一次函数的解析式是y=kx+b,
    把(1,﹣1),(3,2)代入,可得,
    解得,
    故所求函数的解析式是y=x﹣.
    本题考查了两直线相交的问题,解题的关键是理解交点是两条直线的公共点.
    25、(1)y=4x+10040(0≤x≤200);(2)从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
    【解析】
    (1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;
    (2)将y=10200代入(1)中的函数关系式可求得x的值;
    (3)根据(1)的解析式,由一次函数的性质就可以求出结论.
    【详解】
    (1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为
    y=20x+25(200-x)+15(240-x)+24(60+x)
    化简,得y=4x+10040(0≤x≤200)
    (2)将y=10200代入得:4x+10040=10200,解得:x=40,
    ∴200-x=200-40=160,240-x=200,60+x=100,
    ∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.
    (3)∵y=4x+10040,
    ∴k=4>0,
    ∴y随x的增大而增大,
    ∴当x=0时,y最小=10040
    ∴从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
    本题考查了一次函数的解析式的运用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.
    26、(1)见解析;(2)1
    【解析】
    (1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
    (2)由平行线和角平分线定义得出∠DFA=∠DAF,证出AD=DF=5,由勾股定理求出DE==4,即可得出矩形BFDE的面积.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD.
    ∵BE∥DF,BE=DF,
    ∴四边形BFDE是平行四边形.
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形BFDE是矩形;
    (2)解:∵AB∥CD,
    ∴∠BAF=∠DFA,
    ∵AF平分∠BAD,
    ∴∠BAF=∠DAF,
    ∴∠DFA=∠DAF,
    ∴AD=DF=5,
    ∵DE⊥AB,
    ∴∠AED=90°,
    由勾股定理得:DE==4,
    ∴矩形BFDE的面积=DF×DE=5×4=1.
    本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
    题号





    总分
    得分
    尺码数
    人数

    相关试卷

    2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】:

    这是一份2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省金坛市尧塘中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案:

    这是一份江苏省金坛市尧塘中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了已知A样本的数据如下,下列判断正确的是等内容,欢迎下载使用。

    2023-2024学年江苏省金坛市尧塘,河头,水北中学九上数学期末质量跟踪监视模拟试题含答案:

    这是一份2023-2024学年江苏省金坛市尧塘,河头,水北中学九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了抛物线的顶点坐标是,在平面直角坐标系中,以点,下列函数中,图象不经过点等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map