![2024年广东省江门市台山市九年级数学第一学期开学监测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16201321/0-1727516910252/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省江门市台山市九年级数学第一学期开学监测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16201321/0-1727516910327/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省江门市台山市九年级数学第一学期开学监测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16201321/0-1727516910362/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广东省江门市台山市九年级数学第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知直线经过二,一,四象限,且与两坐标轴交于A,B两点,若,是该直线上不重合的两点.则下列结论:①;②的面积为;③当时,;④.其中正确结论的序号是( )
A.①②③B.②③C.②④D.②③④
2、(4分)有一组数据7、11、12、7、7、8、11,下列说法错误的是( )
A.中位数是7B.平均数是9C.众数是7D.极差为5
3、(4分)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )
A.B.C.D.
4、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有( )
A.1个B.2个C.3个D.4个
5、(4分)到三角形三个顶点的距离相等的点是三角形( )的交点.
A.三个内角平分线B.三边垂直平分线
C.三条中线D.三条高
6、(4分)如图,函数与,在同一坐标系中的大致图像是()
A.B.
C.D.
7、(4分)如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
A.1B.2C.5D.6
8、(4分)下列交通标志中、既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形中,,是上的一点,将矩形沿折叠后,点落在边的点上,则的长为_________.
10、(4分)如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________ 米
11、(4分)已知一次函数和函数,当时,x的取值范围是______________.
12、(4分)为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90分,方差是2;小强五次成绩的平均数也是90分,方差是14.8,则小明和小强的成绩中,__________的成绩更稳定.
13、(4分)甲、乙两家人,相约周末前往中梁国际慢城度周末,甲、乙两家人分别从上桥和童家桥驾车同时出发,匀速前进,且甲途经童家桥,并以相同的线路前往中梁国际慢城. 已知乙的车速为30千米/小时,设两车之间的里程为y(千米),行驶时间为x(小时),图中的折线表示从两家人出发至甲先到达终点的过程中y(千米)与x(小时)的函数关系,根据图中信息,甲的车速为_______千米/小时.
三、解答题(本大题共5个小题,共48分)
14、(12分) “四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙,学校计划分阶段引导学生读这些书,计划先购买《论语》和《孟子》供学生使用,已知用500元购买《孟子》的数量和用800元购买《论语》的数量相同,《孟子》的单价比《论语》的单价少15元.
(1)求《论语》和《孟子》这两种书的单价各是多少?
(2)学校准备一次性购买这两种书本,但总费用不超过元,那么这所学校最多购买多少本《论语》?
15、(8分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.
(1)△BEC是否为等腰三角形?证明你的结论;
(2)若AB=2,∠DCE=22.5°,求BC长.
16、(8分)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在中,,,点、分别在边、上,,连接、,点、、分别为、、的中点,且连接、.
观察猜想
(1)线段与 “等垂线段”(填“是”或“不是”)
猜想论证
(2)绕点按逆时针方向旋转到图2所示的位置,连接,,试判断与是否为“等垂线段”,并说明理由.
拓展延伸
(3)把绕点在平面内自由旋转,若,,请直接写出与的积的最大值.
17、(10分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:
(1)本次抽测的男生人数为 ,图①中m的值为 ;
(2)求本次抽测的这组数据的平均数、众数和中位数;
(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.
18、(10分)如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;
(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:
①M点的坐标为 .
②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______
20、(4分)已知关于x的方程2x+m=x﹣3的根是正数,则m的取值范围是_____.
21、(4分)据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)
22、(4分)与最简二次根式是同类二次根式,则__________.
23、(4分)如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在□ABCD中,∠BAD的平分线交CD于点E,连接BE并延长交AD延长线于点F,若AB=AF.
(1)求证:点D是AF的中点;
(2)若∠F=60°,CD=6,求□ABCD的面积.
25、(10分)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
(2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
(1)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B1.
26、(12分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.
(1)如图1,求证:;
(2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
(3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据直线经过的象限即可判定①结论错误;求出点A、B坐标,即可求出的面积,可判定②结论正确;直接观察图像,即可判定③结论正确;将两点坐标代入,进行消元,即可判定④结论错误.
【详解】
∵直线经过二,一,四象限,
∴
∴,①结论错误;
点A,B
∴OA=,OB=
,②结论正确;
直接观察图像,当时,,③结论正确;
将,代入直线解析式,得
∴,④结论错误;
故答案为B.
此题主要考查一次函数的图像和性质,熟练掌握,即可解题.
2、A
【解析】
根据中位数.平均数.极差.众数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:,
则中位数为8,平均数为,众数为7,极差为,
故选A.
本题考查了加权平均数,中位数,众数,极差,熟练掌握概念是解题的关键.
3、B
【解析】
按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.
【详解】
解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.
本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.
4、A
【解析】
先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确.
【详解】
解:∵BD是正方形ABCD的对角线,
∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
在Rt△ABH中,∠AHB=90°﹣∠ABH=67.5°,
∵∠AGH=90°,
∴∠DAE=∠ABH=22.5°,
在△ADE和△CDE中,,
∴△ADE≌△CDE(SAS),
∴∠DAE=∠DCE=22.5°,
∴∠ABH=∠DCF,
在△ABH和△DCF中,,
∴△ABH≌△DCF(ASA),
∴AH=DF,∠CFD=∠AHB=67.5°,
∵∠CFD=∠EAF+∠AEF,
∴67.5°=22.5°+∠AEF,
∴∠AEF=45°,故①②正确;
如图,连接HE,
∵BH是AE垂直平分线,
∴AG=EG,
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5°,
∴∠DHE=45°,
∵∠ADE=45°,
∴∠DEH=90°,∠DHE=∠HDE=45°,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
∵∠AHG=67.5°,
∴∠ABH=22.5°,
∵∠ABD=45°,
∴∠ABH
∴BH平分∠ABE,故④正确;
故选:A.
此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
5、B
【解析】
试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.
解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选B.
点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.
6、B
【解析】
分成a>0和a<0两种情况进行讨论,根据一次函数与反比例函数的图象的性质即可作出判断.
【详解】
解:当a>0时,一次函数单增,过一三四象限,没有选项满足.
当a<0时,一次函数单减,过二三四象限,反比例函数过二四象限,B满足.
故答案选B.
本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
7、C
【解析】
分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
详解:∵数据1,2,x,5,6的众数为6,
∴x=6,
把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
则这组数据的中位数为5;
故选C.
点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
8、A
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
A、既是轴对称图形又是中心对称图形,故本选项正确;
B、不是轴对称图形,也不是中心对称图形,故本选项错误;
C、不是轴对称图形,也不是中心对称图形,故本选项错误;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:A.
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段AE的方程即可解决问题.
【详解】
设AE=x,
由题意得:
FC=BC=10,BE=EF=8-x;
∵四边形ABCD为矩形,
∴∠D=90°,DC=AB=8,
由勾股定理得:
DF2=102-82=16,
∴DF=6,AF=10-6=4;
由勾股定理得:
EF2=AE2+AF2,
即(8-x)2= x2+42
解得:x=1,
即AE=1.
故答案为:1.
该命题以正方形为载体,以翻折变换为方法,以考查勾股定理、全等三角形的性质为核心构造而成;解题的关键是灵活运用有关定理来分析、判断或解答.
10、不稳定性; 4.2
【解析】
(1)根据四边形的不稳定性即可解决问题.
(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.
【详解】
解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动 ,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;
(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.
又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.
故答案为:不稳定性,4.2.
本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
11、
作出函数图象,联立方程组,解出方程组,结合函数图象即可解决问题.
【详解】
根据题意画出函数图象得,
联立方程组和
解得,,,
结合图象可得,当时,
12、小明
【解析】
在平均数相等的前提下,方差或标准差越小,说明数据越稳定,结合题意可知,只需比较小明、小强两人成绩的方差即可得出答案.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8;
∴平均成绩一样,小明的方差小,则小明的成绩稳定.
故选A.
本题考查方差的实际应用,解题的关键是掌握方差的使用.
13、1
【解析】
根据题意和函数图象可知,甲小时行驶的路程=乙小时行驶的路程+10,从而可以求得甲的车速.
【详解】
解:由题意可得,
甲的车速为:千米/小时,
故答案为1.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题(本大题共5个小题,共48分)
14、(1)《孟子》的单价为25元/本,《论语》单价为40元/本;(2)最多购买12本.
【解析】
(1)本题中有两个相等关系:《孟子》的单价=《论语》的单价-15元,用500元购买《孟子》的数量=用800元购买《论语》的数量;据此设未知数列出分式方程,再解方程即可;
(2)设购买《论语》本,据题意列出关于a的不等式,求出不等式的解集后,再取解集中的最大整数即可.
【详解】
解:(1)设《孟子》的单价为元/本,则《论语》单价为元/本,
根据题意,得,解得,
经检验为原方程的根,.
答:《孟子》的单价为25元/本,《论语》单价为40元/本.
(2)设购买《论语》本,则购买《孟子》本.
根据题意,得,
解得,
答:这所学校最多购买12本《论语》.
本题考查了分式方程的应用和一元一次不等式的应用,正确理解题意列出分式方程和一元一次不等式是解题的关键.
15、(1)△BEC是等腰三角形,见解析;(2)2
【解析】
(1)由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)证出AE=AB=2,根据勾股定理求出BE,即可得出BC的长.
【详解】
解:(1)△BEC是等腰三角形;理由如下:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,即△BEC是等腰三角形.
(2)∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∵∠DCE=22.5°,
∴∠DEB=2×(90°-22.5°)=135°,
∴∠AEB=180°-∠DEB=45°,
∴∠ABE=∠AEB=45°,
∴AE=AB=2,
由勾股定理得:BC=BE===2,
答:BC的长是2.
本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出∠BEC=∠ECB是解决问题的关键.
16、(1)是;(2)是,理由详见解析;(3)49
【解析】
(1)根据题意,利用等腰三角形和三角形中位线定理得出,∠MPN=90°判定即可;
(2)由旋转和三角形中位线的性质得出,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;
(3)由题意,得出最大时,与的积最大,点在的延长线上,再由(1)(2)结论,得出与的积的最大值.
【详解】
(1)是;
∵,
∴DB=EC,∠ADE=∠AED=∠B=∠ACB
∴DE∥BC
∴∠EDC=∠DCB
∵点、、分别为、、的中点
∴PM∥EC,PN∥BD,
∴,∠DPM=∠DCE,∠PNC=∠DBC
∵∠DPN=∠PNC+∠DCB
∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°
∴线段与是“等垂线段”;
(2)由旋转知
∵,
∴≌()
∴,
利用三角形的中位线得,,
∴
由中位线定理可得,
∴,
∵
∴
∵
∴
∴
∴与为“等垂线段”;
(3)与的积的最大值为49;
由(1)(2)知,
∴最大时,与的积最大
∴点在的延长线上,如图所示:
∴
∴
∴.
此题主要考查等腰三角形以及三角形中位线的性质,熟练掌握,即可解题.
17、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.
【解析】
分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;
(Ⅱ)根据平均数、众数、中位数的定义求解可得;
(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.
详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.
故答案为50、1;
(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;
(Ⅲ)×350=2.
答:估计该校350名九年级男生中有2人体能达标.
点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
18、(1)见解析;(2),;(3)①;②
【解析】
(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;
(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;
(3)①求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;
②易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.
【详解】
(1)证明:∵Rt△OAB中,D为OB的中点,
∴AD=OB,OD=BD=OB,
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,
∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;
(2)解:在Rt△AOB中,∠AOB=30°,OB=8,
∴AB=4,
∴OA=,
∵四边形ABCE是平行四边形,
∴PB=PE,PC=PA,
∴PB=,
∴
∴,
即
∴;
(3)①∵C(0,4),
设直线AC的解析式为y=kx+4,
∵P(,0),
∴0=k+4,
解得,k=,
∴y=x+4,
∵∠APM=90°,
∴直线PM的解析式为y=x+m,
∵P(,0),
∴0=×+m,
解得,m=-3,
∴直线PM的解析式为y=x-3,
设M(x,x-3),
∵AP=,
∴(x-)2+(x-3)2=()2,
化简得,x2-4x-4=0,
解得,x1=,x2=(不合题意舍去),
当x=时,y=×()-3=,
∴M(,),
故答案为:(,);
②∵
∴直线BC的解析式为:,
联立,解得,
∴,
本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3y2-y-1=0
【解析】
将分式方程中换成3y,换成,去分母即可得到结果.
【详解】
解:根据题意,得:3y-=1,
去分母,得:3y2-1=y,
整理,得:3y2-y-1=0.
故答案为:3y2-y-1=0.
本题考查了用换元法解分式方程.
20、m<﹣1
【解析】
根据关于x的方程2x+m=x﹣1的根是正数,可以求得m的取值范围.
【详解】
解:由方程2x+m=x﹣1,得x=﹣m﹣1,
∵关于x的方程2x+m=x﹣1的根是正数,
∴﹣m﹣1>0,
解得,m<﹣1,
故答案为:m<﹣1.
本题考查解一元一次方程和一元一次不等式,解答本题的关键是明确题意,求出m的取值范围.
21、1.888×
【解析】
先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.
【详解】
18884600=1.88846×≈1.888×
故答案为:1.888×
本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.
22、1
【解析】
先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.
【详解】
解:∵,
∴m+1=2,
∴m=1.
故答案为1.
本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.
23、
【解析】
先根据得出,再求出的度数,由即可得出结论.
【详解】
,,
,
,
,
.
故答案为:.
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)S▱ABCD=9.
【解析】
(1)先根据平行四边形的性质得出BC=AD,由等腰三角形三线合一的性质得出BE=EF,利用ASA证明△BCE≌△FDE,得到BC=DF.等量代换即可证明AD=DF,即点D是AF的中点;
(2)根据有一个角是60°的等腰三角形是等边三角形得出△ABF是等边三角形,再证明S▱ABCD=S△ABF.然后由S△ABF=BF•AE列式计算即可.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BC=AD,CD=AB,BC∥AD,
∴∠CBE=∠F.
∵AB=AF,AE平分∠BAF,
∴BE=EF,AE⊥BF.
在△BCE与△FDE中,
,
∴△BCE≌△FDE(ASA),
∴BC=DF.
∵BC=AD,
∴AD=DF,
即点D是AF的中点;
(2)解:∵∠F=60°,AB=AF,
∴△ABF是等边三角形.
由(1)可知△BCE≌△FDE,
∴S▱ABCD=S△ABF.
∵AF=BF=AB=CD=6,∠F=60°,∠AEF=90°,
∴AE=AF•sin∠F=6×=3,
∴S△ABF=BF•AE=×6×3=9,
∴S▱ABCD=9.
本题考查了平行四边形的性质,等腰三角形的性质,全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,综合性较强,难度适中.
25、(1)如图所示:△A1O1B1为所求作的三角形;见解析;(2)如图所示:为所求作的三角形,见解析;(-1,4);(1)如图所示:为所求作的三角形;见解析.
【解析】
(1)先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形;
(2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分得特点,找到关键点的对应点,再顺次连接对应点即可得到平移后的图形;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得到B点的坐标;
(1)先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到对应点A2O, B1,最后顺次连接,顺次连接得出旋转后的图形.
【详解】
解:(1)如图所示:先将A,B,O三点向右平移4个单位长度,得到A1 ,O1, B1,最后顺次连接,即可得到:为所求作的三角形;
(2)如图所示:先将A,B,O以点A为对称中心,得到A,O2, B2最后顺次连接,即可得到:为所求作的三角形,(-1,4);
(1)如图所示:先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到A2,O, B1,最后顺次连接,即可得到:为所求作的三角形;
本题主要考查了利用旋转变换,平移变换以及中心对称进行作图,解题时注意:关于x轴的对称点的横坐标不变,纵坐标互为相反数.关于y轴的对称点的横坐标互为相反数,纵坐标不变.
26、 (1)见解析;(2)见解析;(3)见解析.
【解析】
(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.
【详解】
(1)在中,为的中点,
∴.
同理,在中,.
∴.
(2)如图②,(1)中结论仍然成立,即EG=CG.
理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
∴∠AMG=∠DMG=90°.
∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.
在△DAG和△DCG中,
,
∴△DAG≌△DCG(SAS),
∴AG=CG.
∵G为DF的中点,
∴GD=GF.
∵EF⊥BE,
∴∠BEF=90°,
∴∠BEF=∠BAD,
∴AD∥EF,
∴∠N=∠DMG=90°.
在△DMG和△FNG中,
,
∴△DMG≌△FNG(ASA),
∴MG=NG.
∵∠DA∠AMG=∠N=90°,
∴四边形AENM是矩形,
∴AM=EN,
在△AMG和△ENG中,
,
∴△AMG≌△ENG(SAS),
∴AG=EG,
∴EG=CG;
(3)如图③,(1)中的结论仍然成立.
理由:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN⊥AB于N.
∵MF∥CD,
∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°
∵FN⊥AB,
∴∠FNH=∠ANF=90°.
∵G为FD中点,
∴GD=GF.
在△MFG和△CDG中
,
∴△CDG≌△MFG(AAS),
∴CD=FM.MG=CG.
∴MF=AB.
∵EF⊥BE,
∴∠BEF=90°.
∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,
∴∠NFH=∠EBH.
∵∠A=∠ANF=∠AMF=90°,
∴四边形ANFQ是矩形,
∴∠MFN=90°.
∴∠MFN=∠CBN,
∴∠MFN+∠NFE=∠CBN+∠EBH,
∴∠MFE=∠CBE.
在△EFM和△EBC中
,
∴△EFM≌△EBC(SAS),
∴ME=CE.,∠FEM=∠BEC,
∵∠FEC+∠BEC=90°,
∴∠FEC+∠FEM=90°,
即∠MEC=90°,
∴△MEC是等腰直角三角形,
∵G为CM中点,
∴EG=CG,EG⊥CG.
考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
题号
一
二
三
四
五
总分
得分
广东省江门市台山市2023-2024学年数学九年级第一学期期末联考模拟试题含答案: 这是一份广东省江门市台山市2023-2024学年数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
2023-2024学年广东省江门市台山市数学八年级第一学期期末统考模拟试题含答案: 这是一份2023-2024学年广东省江门市台山市数学八年级第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,若,则 的值为,若分式的值为零,则x的值是,下列各式运算正确的是等内容,欢迎下载使用。
2023-2024学年广东省江门市台山市八上数学期末检测试题含答案: 这是一份2023-2024学年广东省江门市台山市八上数学期末检测试题含答案,共7页。试卷主要包含了下列说法正确的是,若关于的分式方程无解,则的值是,下列各数中,属于无理数的是等内容,欢迎下载使用。