搜索
    上传资料 赚现金
    英语朗读宝

    2024年广东省江门市第二中学数学九年级第一学期开学经典试题【含答案】

    2024年广东省江门市第二中学数学九年级第一学期开学经典试题【含答案】第1页
    2024年广东省江门市第二中学数学九年级第一学期开学经典试题【含答案】第2页
    2024年广东省江门市第二中学数学九年级第一学期开学经典试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广东省江门市第二中学数学九年级第一学期开学经典试题【含答案】

    展开

    这是一份2024年广东省江门市第二中学数学九年级第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)将分式中的a,b都扩大2倍,则分式的值( )
    A.不变B.也扩大2倍C.缩小二分之一D.不能确定
    2、(4分)永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是
    A.28,27B.28,28C.28,30D.27,28
    3、(4分)一次函数分别交轴、轴于,两点,在轴上取一点,使为等腰三角形,则这样的点最多有几个( )
    A.5B.4C.3D.2
    4、(4分)对于代数式(为常数),下列说法正确的是( )
    ①若,则有两个相等的实数根
    ②存在三个实数,使得
    ③若与方程的解相同,则
    A.①②B.①③C.②③D.①②③
    5、(4分)矩形OABC在平面直角坐标系中的位置如图所示,已知,点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作,交x轴于点D.下列结论:①;②当点D运动到OA的中点处时,;③在运动过程中,是一个定值;④当△ODP为等腰三角形时,点D的坐标为.其中正确结论的个数是( )
    A.1个B.2个C.3个D.4个
    6、(4分)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是( )
    A.甲的成绩比乙的成绩稳定
    B.乙的成绩比甲的成绩稳定
    C.甲、乙两人的成绩一样稳定
    D.无法确定甲、乙的成绩谁更稳定
    7、(4分)用配方法解方程x2﹣4x﹣2=0变形后为( )
    A.(x﹣4)2=6 B.(x﹣2)2=6 C.(x﹣2)2=2 D.(x+2)2=6
    8、(4分)甲、乙两名运动员10次比赛成绩如表,S12,S22分别表示他们测试成绩的方差,则有( )
    A.S12>S22B.S12=S22C.S120,这两个函数图象的交点分别为A,B,求点A,B的坐标(用k表示);
    (2)若k=1,点P是函数在第一象限内的图象上的一个动点(点P不与B重合),设点P的坐标为(),其中m>0且m≠2.作直线PA,PB分别与x轴交于点C,D,则△PCD是等腰三角形,请说明理由;
    (3)在(2)的基础上,是否存在点P使△PCD为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
    17、(10分)(1)因式分解:
    (2)解不等式组:
    18、(10分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
    (1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
    (2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).
    20、(4分)在一个扇形统计图中,表示种植苹果树面积的扇形的圆心角为,那么苹果树面积占总种植面积的___.
    21、(4分)如图,将沿方向平移得到,如果四边形的周长是,则的周长是____.
    22、(4分)如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.
    23、(4分)若y=,则x+y= .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某文具店从市场得知如下信息:
    该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.
    (1)求y与x之间的函数关系式;
    (2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?
    (3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?
    25、(10分)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?
    26、(12分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:
    (1)组的人数是____人,并补全条形统计图.
    (2)本次调查的众数是_____等,中位数落在_____等.
    (3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    依题意,分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可.
    【详解】
    分别用2a和2b去代换原分式中的a和b,原式= =
    可见新分式的值是原分式的2倍.
    故选B.
    此题考查分式的基本性质,解题关键在于分别用2a和2b去代换原分式中的a和b
    2、B
    【解析】
    根据众数和中位数的意义进行分析.
    【详解】
    27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.
    故选:28,28.
    本题考核知识点:众数和中位数. 解题关键点:理解众数和中位数的意义.
    3、B
    【解析】
    首先根据题意,求得与的坐标,然后利用勾股定理求得的长,再分别从,,去分析求解,即可求得答案.
    【详解】
    解:当时,,当时,,
    ,,

    ①当时,,

    ②当时,,,
    ③当时,设的坐标是,,,
    ,由勾股定理得:,
    解得:,
    的坐标是,,
    这样的点最多有4个.
    故选:B.
    此题考查了等腰三角形的性质、一次函数的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.
    4、B
    【解析】
    根据根的判别式判断①;根据一元二次方程(为常数)最多有两个解判断②;将方程的解代入即可判断③.
    【详解】
    解:①
    方程有两个相等的实数根.
    ①正确:
    ②一元二次方程(为常数)最多有两个解,
    ②错误;
    ③方程的解为,
    将x=-2代人得,

    ③正确.
    故选:B.
    本题考查的知识点是一元二次方程根的情况,属于比较基础的题目,易于掌握.
    5、D
    【解析】
    ①根据矩形的性质即可得到;故①正确;
    ②由点D为OA的中点,得到,根据勾股定理即可得到,故②正确;
    ③如图,过点P作于F,FP的延长线交BC于E,,则,根据三角函数的定义得到,求得,根据相似三角形的性质得到,根据三角函数的定义得到,故③正确;
    ④当为等腰三角形时,Ⅰ、,解直角三角形得到,
    Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;
    Ⅲ、,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;于是得到当为等腰三角形时,点D的坐标为.故④正确.
    【详解】
    解:①∵四边形OABC是矩形,,
    ;故①正确;
    ②∵点D为OA的中点,

    ,故②正确;
    ③如图,过点P作 A于F,FP的延长线交BC于E,
    ,四边形OFEC是矩形,

    设,则,
    在中,,












    ,故③正确;
    ④,四边形OABC是矩形,



    当为等腰三角形时,
    Ⅰ、
    Ⅱ、

    ,故不合题意舍去;
    Ⅲ、,

    故不合题意舍去,
    ∴当为等腰三角形时,点D的坐标为.故④正确,
    故选:D.
    考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.
    6、A
    【解析】
    因为,,
    所以甲的成绩比乙的成绩稳定.
    7、B
    【解析】
    在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.
    【详解】
    把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2
    方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4
    配方得(x-2)2=1.
    故选B.
    配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    8、A
    【解析】
    根据题意以及图表所示,先求出甲和乙成绩的平均数,然后运用方差公式即可做出选择.
    【详解】
    由表可知,甲的成绩平均数为,乙的成绩的平均数为,所以甲的成绩的方差为,乙的方差为,所以>.
    故本题选择A.
    本题主要考查方差公式的运用,根据图中数据,掌握方差公式即可求解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4.1
    【解析】
    直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.
    【详解】
    解:∵菱形的两条对角线分别为6cm和1cm,
    ∴菱形的边长为:=5(cm),
    设菱形的高为:xcm,则5x=×6×1,
    解得:x=4.1.
    故答案为:4.1.
    此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.
    10、x(x+6)
    【解析】
    根据提公因式法,可得答案.
    【详解】
    原式=x(6+x),
    故答案为:x(x+6).
    本题考查了因式分解,利用提公因式法是解题关键.
    11、
    【解析】
    分析:首先设出菱形边长为a,由AB=a,得出C、D的坐标,过点C作CE⊥AB,由勾股定理可得D点坐标.
    详解:设菱形边长为a,即AB=a, 设C点坐标为(b,), ∵BC∥x轴,∴D点纵坐标为:,∴D点横坐标为:,则x= -4b, ∴D(-4b, ), ∵CD=a, ∴4b+b=a, a=5b,
    过点C作CE⊥AB,则BE=a-AE=a-b=4b,BC=a=5b,
    由勾股定理:CE=3b,CE= ,
    ∴b²=1-=, b=,∴D.故答案为.
    点睛:本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,解题的关键是设出菱形边长,利用反比例函数的性质表示出菱形各顶点的坐标,进而求解.
    12、
    【解析】
    过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.
    【详解】
    如图,过点A1分别作正方形两边的垂线A1D与A1E,
    ∵点A1是正方形的中心,
    ∴A1D=A1E,
    ∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,
    ∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,
    ∴△A1BD≌△A1CE(ASA),
    ∴△A1BD的面积=△A1CE的面积,
    ∴两个正方形的重合面积=正方形面积=,
    ∴重叠部分的面积和为×2=.
    故答案是:.
    考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.
    13、4
    【解析】
    根据黄金分割的概念把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.
    【详解】
    由题意得:AB⋅BC=AC=4.
    故答案为:4.
    此题考查黄金分割,解题关键可知与掌握其概念.
    三、解答题(本大题共5个小题,共48分)
    14、(1)14;(2)
    【解析】
    (1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可.
    (2)根据多项式乘以多项式的运算法则计算即可.
    【详解】
    解:(1)原式=
    =
    =14
    (2)原式=
    =
    本题考查了二次根式的性质和多项式与多项式相乘,解题的关键是准确的化简二次根式,以及掌握乘法运算法则.
    15、a(m﹣3)1.
    【解析】
    先提取公因式,再利用完全平方公式分解因式即可解答
    【详解】
    原式=a(m1﹣6m+9)
    =a(m﹣3)1.
    此题考查提公因式法和公式法的综合运用,解题关键在于熟练掌握运算法则
    16、(1)点A坐标为(-k,-1),点B坐标(k,1);(2)△PCD是等腰三角形;,理由见解析;(3)不存在,理由见解析.
    【解析】
    (1)联立两个函数解析式即可;
    (2)先求出点C和点D的坐标,然后根据两点距离公式得到PC=PD即可;
    (3)过点P作PH⊥CD于H,根据等腰直角三角形的性质可得CD=2PH,可求m的值;然后再点P不与B重合即可解答.
    【详解】
    解:(1)∵两个函数图象的交点分别为点A和点B,
    ∴,解得:或
    ∴点A坐标为(-k,-1),点B坐标(k,1);
    (2)△PCD是等腰三角形,理由如下:
    ∵k=1
    ∴点A和点B的坐标为(-1,-1)和(1,1),
    设点P的坐标为(m,)
    ∴直线PA解析式为:
    ∵当y=0时,x=m-1,
    ∴点C的坐标为(m-1,0)
    同理可求直线PB解析式为:
    ∵当y=0时,x=m+1,
    ∴点D的坐标为(m+1,0)
    ∴,
    ∴PC=PD
    ∴△PCD是等腰三角形;
    (3)如图:过点P作PH⊥CD于H
    ∵△PCD直角三角形,PH⊥CD,
    ∴CD=2PH,
    ∴m+1-(m-1)=2×,解得m=1
    ∴点P的坐标为(1,1),
    ∵点B(1,1)与点函数在第一象限内的图象上的一个动点P不重合
    ∴不存在点P使△PCD为直角三角形.
    本题属于反比例函数综合题,主要考查了反比例函数的性质、等腰直角三角形的性质、两点距离公式等知识点,掌握反比例函数的性质是解答本题的关键.
    17、(1)2ax(x+2)(x−2);(2)−3<x<1.
    【解析】
    (1)原式提取公因式,再利用平方差公式分解即可;
    (2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
    【详解】
    解:(1)原式=2ax(x2−4)=2ax(x+2)(x−2);
    (2),
    由①得:x>−3,
    由②得:x<1,
    则不等式组的解集为−3<x<1.
    此题考查了提公因式法与公式法的综合运用,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    18、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.
    【解析】
    试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
    (2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
    试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).
    故答案为10;2.
    (2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).
    (3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.
    答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.
    点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、随机
    【解析】
    根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件. 可能事件是指在一定条件下,一定不发生的事件. 不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答
    【详解】
    从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件
    此题考查随机事件,难度不大
    20、30%.
    【解析】
    因为圆周角是360°,种植苹果树面积的扇形圆心角是108°,说明种植苹果树面积占总面积的108°÷360°=30%.据此解答即可.
    【详解】
    由题意得:种植苹果树面积占总面积的:108°÷360°=30%.
    故答案为:30%.
    本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的分率等于该部分所对应的扇形圆心角的度数与360°的比值.
    21、
    【解析】
    根据平移的性质可得,即可求得的周长.
    【详解】
    平移,



    故答案为:1.
    本题考查了三角形平移的问题,掌握平移的性质是解题的关键.
    22、2
    【解析】
    由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB= x,则AF=x ,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.
    【详解】
    由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.
    设AB= x,则AF=x ,AC=x+1.
    ∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.
    ∵ABCD是矩形,∴CD=AB=2.
    故答案为:2.
    本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    23、1.
    【解析】
    试题解析:∵原二次根式有意义,
    ∴x-3≥0,3-x≥0,
    ∴x=3,y=4,
    ∴x+y=1.
    考点:二次根式有意义的条件.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.
    【解析】
    (1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,
    (2)把y=1200代入y与x之间的函数关系式即可,
    (3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.
    【详解】
    解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,
    A品牌计算器的单个利润为90﹣70=20元,
    A品牌计算器销售完后利润=20x,
    B品牌计算器的单个利润为140﹣100=40元,
    B品牌计算器销售完后利润=40(50﹣x),
    总利润y=20x+40(50﹣x),
    整理后得:y=2000﹣20x,
    答:y与x之间的函数关系式为y=2000﹣20x;
    (2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,
    解得:x=40,
    则A种品牌计算器的数量为40台,
    B种品牌计算器的数量为50﹣40=10台,
    答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;
    (3)根据题意得:70x+100(50﹣x)≤4100,
    解得:x≥30,
    一次函数y=2000﹣20x随x的增大而减小,
    x为最小值时y取到最大值,
    把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,
    答:该文具店可获得的最大利润是1400元.
    本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.
    25、水的深度是12尺,芦苇的长度是13尺.
    【解析】
    找到题中的直角三角形,设水深为x尺,根据勾股定理解答.
    【详解】
    解:设水的深度为x尺,如下图,
    根据题意,芦苇长:OB=OA=(x+1)尺,
    在Rt△OCB中,
    52+x2=(x+1)2
    解得:x=12,
    x+1=13
    所以,水的深度是12尺,芦苇的长度是13尺.
    本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.
    26、(1)50;(2)众数是B等,中位数落在C等;(3)3325人.
    【解析】
    (1)根据A的人数除以A所占的百分,可得调查的总人数,根据有理数的减法,可得C的人数;
    (2)根据众数的定义,中位数的定义,可得答案;
    (3)根据样本估计总体,可得答案.
    【详解】
    (1)调查的总人数40÷20%=200人,C组的人数=200﹣40﹣100﹣10=50,补充如图:
    (2)本次调查的众数是 100,即B等,中位数是=75,落在C等;
    (3)3500×=3325人.
    答:该校今年有3500名学生,达到国家规定的阅读时间的人数约有3325人.
    本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    题号





    总分
    得分
    批阅人
    8分
    9分
    10分
    甲(频数)
    4
    2
    4
    乙(频数)
    3
    4
    3
    A品牌计算器
    B品牌计算器
    进价(元/台)
    70
    100
    售价(元/台)
    90
    140

    相关试卷

    2024年北京市清华大附属中学数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024年北京市清华大附属中学数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年天津市第一中学数学九年级第一学期开学经典试题【含答案】:

    这是一份2024-2025学年天津市第一中学数学九年级第一学期开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏盐城市大丰区草堰中学数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024-2025学年江苏盐城市大丰区草堰中学数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限D.当x=时,y=1,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map