北京交通大学附属中学2023-2024学年高一上学期12月月考数学试卷(Word版附解析)
展开说明:本试卷共4页,共120分.考试时长90分钟.
一、选择题(本大题共10小题,每小题4分,共40分.)
1. 已知命题,,则命题p的否定为( )
A. ,B. ,
C ,D. ,
2. 设集合,,则( )
A. B.
C. D.
3. 以下函数既是偶函数又在上单调递减的是( )
A. B.
C. D.
4. 已知,则下列不等式一定成立是( )
A. B.
C. D.
5. 函数的图象是( )
A. B. C. D.
6. 已知是定义域为的奇函数,当时,单调递增,且,则满足不等式的的取值范围是( )
A B. C. D.
7. 已知函数,则“函数有两个零点”成立的充分不必要条件是
A. B. C. D.
8. 在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )
A. B. C. D.
9. 函数在上恒为正数,则实数的取值范围是( )
A. B.
C. D.
10. 形如(n是非负整数)的数称为费马数,记为数学家费马根据都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出不是质数,那的位数是( )
(参考数据: lg2≈03010 )
A. 9B. 10C. 11D. 12
二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)
11. 函数的定义域为__________.
12. 某高中学校进行问卷调查,用比例分配的分层随机抽样方法从该校三个年级中抽取36人进行问卷调查,其中高一年级抽取了15人,高二年级抽取了12人,且高三年级共有学生900人,则该高中的学生总数为__________人.
13. 令,,,则三个数,,的大小顺序是______.(用“<”连接)
14. 为了解本书居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为,,,则它们的大小关系为______.(用“<”连接)
15. 如图,在等边三角形ABC中, AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:
①函数f(x)的最大值为12;
②函数f(x)的图象的对称轴方程为x=9;
③关于x的方程最多有5个实数根.
其中,所有正确结论的序号是____.
三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)
16. 已知集合,.
(1)当时,求集合;
(2)若,求实数的取值范围.
17 已知函数.
(1)求函数的定义域和值域;
(2)求函数在区间上的最小值.
18. 在新高考背景下,北京高中学生需从思想政治、历史、地理、物理、化学、生物这6个科目中选择3个科目学习并参加相应的等级性考试.为提前了解学生的选科意愿,某校在期中考试之后,组织该校高一学生进行了模拟选科.为了解物理和其他科目组合的人数分布情况,某教师整理了该校高一(1)班和高一(2)班的相关数据,如下表:
其中高一(1)班共有40名学生,高一(2)班共有38名学生.假设所有学生的选择互不影响.
(1)从该校高一(1)班和高一(2)班所有学生中随机选取1人,求此人在模拟选科中选择了“物理+化学”的概率;
(2)从表中选择“物理+思想政治”的学生中随机选取2人参加座谈会,求这2人均来自高一(2)班的概率;
(3)该校在本学期期末考试之后组织高一学生进行了第二次选科,现从高一(1)班和高一(2)班各随机选取1人进行访谈,发现他们在第二次选科中都选择了“物理+历史”.根据这一结果,能否认为在第二次选科中选择“物理+历史”的人数发生了变化?说明理由.
19. 已知函数(且).
(1)求的定义域;
(2)若当时,函数在有且只有一个零点,求实数的范围;
(3)是否存在实数,使得当的定义域为时,值域为,若存在,求出实数的范围;若不存在,请说明理由.
20. 对于函数,若在定义域内存在实数,且,满足,则称为“弱偶函数”.若在定义域内存在实数,满足,则称为“弱奇函数”.
(1)判断函数是否为“弱奇函数”或“弱偶函数”;(直接写出结论)
(2)已知函数,试判断为其定义域上的“弱奇函数”,若是,求出所有满足的的值,若不是,请说明理由;
(3)若为其定义域上的“弱奇函数”.求实数取值范围.
物理+化学
物理+生物
物理+思想政治
物理+历史
物理+地理
高一(1)班
10
6
2
1
7
高一(2)班.
15
9
3
1
6
安徽师范大学附属中学2023-2024学年高一下学期3月月考数学试卷(Word版附解析): 这是一份安徽师范大学附属中学2023-2024学年高一下学期3月月考数学试卷(Word版附解析),共11页。试卷主要包含了如图,在平行四边形中,,则,已知,则,3 B等内容,欢迎下载使用。
安徽师范大学附属中学2023-2024学年高二下学期2月月考数学试卷(Word版附解析): 这是一份安徽师范大学附属中学2023-2024学年高二下学期2月月考数学试卷(Word版附解析),共22页。试卷主要包含了本试卷分选择题和非选择题两部分,答题前,考生务必用直径0, 已知幂函数 为偶函数,则, 直线与抛物线交于 两点,则, 点在圆上,点在圆上,则等内容,欢迎下载使用。
云南师范大学附属中学2023-2024学年高一上学期12月月考数学试题(Word版附解析): 这是一份云南师范大学附属中学2023-2024学年高一上学期12月月考数学试题(Word版附解析),共19页。试卷主要包含了 已知,,则, 已知函数,且,则, 已知,且,则等内容,欢迎下载使用。