2024-2025学年陕西省兴平市西郊高级中学九年级数学第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式组中的两个不等式的解集在数轴上表示为( )
A.B.
C.D.
2、(4分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为(2,2);②当x>2时,;③当x=1时,BC=3;④当x逐渐增大时,随着的增大而增大,随着的增大而减小.则其中正确结论的序号是( )
A.①②B.①③C.②④D.①③④
3、(4分)方程x(x-6)=0的根是( )
A.x1=0,x2=-6B.x1=0,x2=6C.x=6D.x=0
4、(4分)如图,点,,三点在轴的正半轴上,且,过点,,分别作轴的垂线交反比例函数的图象于点,,,连结,,,则为( )
A.12∶7∶4B.3∶2∶1C.6∶3∶2D.12∶5∶4
5、(4分)下列函数的图象经过(0,1),且y随x的增大而减小的是( )
A.y=一xB.y=x-1C.y=2x+1D.y=一x+1
6、(4分)已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为( )
A.(2,5)B.(5,2)C.(2,5)或(-2,5)D.(5,2)或(-5,2)
7、(4分)下列说法:矩形的对角线互相垂直且平分;菱形的四边相等;一组对边平行,另一组对边相等的四边形是平行四边形;正方形的对角线相等,并且互相垂直平分.其中正确的个数是( )
A.个B.个C.个D.个
8、(4分)已知矩形的面积为36cm2,相邻的两条边长为xcm和ycm,则y与x之间的函数图像大致是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一直角三角形的两条直角边分别是4cm和3cm,则其斜边上中线的长度为 ___________.
10、(4分)如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.
11、(4分)已知不等式组的解集为,则的值是________.
12、(4分)如图,已知□ABCD和正方形CEFG有一个公共的顶点C,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数是_________.
13、(4分)一组数据3,4,x,6,7的平均数为5,则这组数据的方差______.
三、解答题(本大题共5个小题,共48分)
14、(12分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
15、(8分)关于的方程.
(1)当时,求该方程的解;
(2)若方程有增根,求的值.
16、(8分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1)求一班参赛选手的平均成绩;
(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?
(3)求二班参赛选手成绩的中位数.
17、(10分)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
18、(10分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:画出图形,把截去的部分打上阴影
新多边形内角和比原多边形的内角和增加了.
新多边形的内角和与原多边形的内角和相等.
新多边形的内角和比原多边形的内角和减少了.
将多边形只截去一个角,截后形成的多边形的内角和为,求原多边形的边数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在ΔABC中,AB=8,AC=6,∠BAC=30°,将ΔABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为________.
20、(4分)如图,已知A点的坐标为,直线与y轴交于点B,连接AB,若,则____________.
21、(4分)当x _________时,分式有意义.
22、(4分)对于点P(a,b),点Q(c,d),如果a﹣b=c﹣d,那么点P与点Q就叫作等差点.例如:点P(4,2),点Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,则点P与点Q就是等差点.如图在矩形GHMN中,点H(2,3),点N(﹣2,﹣3),MN⊥y轴,HM⊥x轴,点P是直线y=x+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为_____.
23、(4分) “I am a gd student.”这句话的所有字母中,字母“a”出现的频率是______
二、解答题(本大题共3个小题,共30分)
24、(8分)乙知关于的方程.
(1)试说明无论取何值时,方程总有两个不相等的实数很;
(2)如果方程有一个根为, 试求的值.
25、(10分)先化简,再求值:(x+2+)÷,其中x=2.
26、(12分)如图,AD是△ABC的边BC上的高,∠B=60°,∠C=45°,AC=6.求:
(1)AD的长;
(2)△ABC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
【详解】
不等式组,
解得:,
解得:,
∴不等式组的解集为:,
故选:C.
本题考查了不等式组的解法和在数轴上表示不等式组的解集.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.
2、D
【解析】
一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解;根据图象可求得x>2时y1>y2;根据x=1时求出点B点C的坐标从而求出BC的值;根据图像可确定一次函数和反比例函数在第一象限的增减性.
【详解】
解:①联立一次函数与反比例函数的解析式,
解得,,
∴A(2,2),故①正确;
②由图象得x>2时,y1>y2,故②错误;
③当x=1时,B(1,4),C(1,1),∴BC=3,故③正确;
④一次函数y随x的增大而增大,反比例函数k>0,y随x的增大而减小.故④正确.
∴①③④正确.
故选D.
本题主要是考查学生对两个函数图象性质的理解.这是一道常见的一次函数与反比例函数结合的题目,需要学生充分掌握一次函数和反比例函数的图象特征.理解一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.
3、B
【解析】
根据因式分解,原方程转化为x=0或x-6=0,然后解两个一次方程即可得答案.
【详解】
解:x(x-6)=0,
x=0或x-6=0,
∴x1=0,x2=6,
故选B.
本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的解法是关键.
4、C
【解析】
设,再分别表示出D,E,F的坐标,再求出用含k的式子表示即可求解.
【详解】
解:设,
∴,,.
∴,
,
.
∴.
故选C.
本题考查了反比例函数的图象与性质.解题关键在于,即,因此可以得到,,坐标的关系.
5、D
【解析】
设该函数解析式为(k≠1),由该函数的图象经过(1,1)可得出b=1,由y随x的增大而减小可得出k<1,再对照四个选项即可得出结论.
【详解】
解:设该函数解析式为(k≠1).
∵该函数的图象经过(1,1),
∴b=1;
∵y随x的增大而减小,
∴k<1.
故选D.
本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出k<1及b=1是解题的关键.
6、D
【解析】
由点P位于x轴上方可得点P的纵坐标大于0,所以点P的纵坐标为2,由于点P相对于y轴的位置不确定,所以点P的横坐标为5或﹣5.
【详解】
由题意得P(5,2)或(﹣5,2).
故选D.
本题主要考查点的坐标,将点到坐标轴的距离转化为相应的坐标是解题的关键.
7、B
【解析】
根据矩形的性质可得(1)错误;
根据菱形的性质可得(2)正确;
根据平行四边形的判定可得(3)错误;
根据正方形的性质可得(4)正确;
【详解】
(1)矩形的对角线相等且互相平分,故(1)错误;
(2)菱形的四边相等,故(2)正确;
(3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;
(4)正方形的对角线相等,并且互相垂直平分,故(4)正确.
故选:B.
此题考查的知识点是特殊的四边形,解题关键是掌握正方形、菱形、矩形的特点.
8、A
【解析】
解:根据矩形的面积公式,得xy=36,即,是一个反比例函数
故选A
二、填空题(本大题共5个小题,每小题4分,共20分)
9、cm
【解析】
【分析】先利用勾股定理求出直角三角形的斜边长,然后再根据直角三角形斜边中线的性质进行解答即可.
【详解】直角三角形的斜边长为:=5cm,
所以斜边上的中线长为:cm,
故答案为:cm.
【点睛】本题考查了勾股定理、直角三角形斜边中线,熟知直角三角形斜边中线等于斜边的一半是解题的关键.
10、1
【解析】
由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.
【详解】
解:∵由作图可知,MN为AB的垂直平分线,
∴AE=BE,=6,
∴.
而是的中位线,
∴.
故答案为:1.
本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.
11、
【解析】
根据不等式的解集求出a,b的值,即可求解.
【详解】
解得
∵解集为
∴=1,3+2b=-1,
解得a=1,b=-2,
∴=2×(-3)=-6
此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.
12、700
【解析】
分析:由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.
详解:∵四边形CEFG是正方形,
∴∠CEF=90°,
∵∠CED=180°-∠AEF-∠CEF=180°-15°-90°=75°,
∴∠D=180°-∠CED-∠ECD=180°-75°-35°=70°,
∵四边形ABCD为平行四边形,
∴∠B=∠D=70°(平行四边形对角相等).
故答案为:70°.
点睛:本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.
13、1
【解析】
先由平均数的公式求出x的值,再根据方差的公式计算即可.
【详解】
解:数据3,4,x,6,7的平均数为5,
,
解得:,
这组数据为3,4,5,6,7,
这组数据的方差为:.
故答案为:1.
本题考查方差的定义:一般地设n个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
三、解答题(本大题共5个小题,共48分)
14、 (1) 四边形EFGH的形状是正方形;(2)①∠HAE=90°+a;②见解析;③四边形EFGH是正方形,理由见解析
【解析】
(1)根据等腰直角三角形的性质得到∠E=∠F=∠G=∠H=90°,求出四边形是矩形,根据勾股定理求出AH=HD=AD,DG=GC=CD,CF=BF=BC,AE=BE=AB,推出EF=FG=GH=EH,根据正方形的判定推出四边形EFGH是正方形即可;
(2)①根据平行四边形的性质得出,∠BAD=180°-α,根据△HAD和△EAB是等腰直角三角形,得到∠HAD=∠EAB=45°,求出∠HAE即可;
②根据△AEB和△DGC是等腰直角三角形,得出AE=AB,DG=CD,平行四边形的性质得出AB=CD,求出∠HDG=90°+a=∠HAE,根据SAS证△HAE≌△HDG,根据全等三角形的性质即可得出HE=HG;
③与②证明过程类似求出GH=GF,FG=FE,推出GH=GF=EF=HE,得出菱形EFGH,证△HAE≌△HDG,求出∠AHD=90°,∠EHG=90°,即可推出结论.
【详解】
(1)解:四边形EFGH的形状是正方形.
(2)解:①∠HAE=90°+α,
在平行四边形ABCD中AB∥CD,
∴∠BAD=180°-∠ADC=180°-α,
∵△HAD和△EAB是等腰直角三角形,
∴∠HAD=∠EAB=45°,
∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a)=90°+α,
答:用含α的代数式表示∠HAE是90°+α.
②证明:∵△AEB和△DGC是等腰直角三角形,
∴AE=AB,DG=CD,
在平行四边形ABCD中,AB=CD,
∴AE=DG,
∵△AHD和△DGC是等腰直角三角形,
∴∠HDA=∠CDG=45°,
∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,
∵△AHD是等腰直角三角形,
∴HA=HD,
∴△HAE≌△HDG,
∴HE=HG.
③答:四边形EFGH是正方形,
理由是:由②同理可得:GH=GF,FG=FE,
∵HE=HG,
∴GH=GF=EF=HE,
∴四边形EFGH是菱形,
∵△HAE≌△HDG,
∴∠DHG=∠AHE,
∵∠AHD=∠AHG+∠DHG=90°,
∴∠EHG=∠AHG+∠AHE=90°,
∴四边形EFGH是正方形.
考查对正方形的判定,等腰直角三角形的性质,菱形的判定和性质,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.
15、(1)x=1;(2)k=1.
【解析】
(1)把k=3代入方程计算即可求出解;
(2)由分式方程有增根求出x的值,分式方程去分母后代入计算即可求出k的值.
【详解】
(1)把k=3代入方程得:3,去分母得:1+3x﹣6=x﹣3,解得:x=1,经检验x=1是分式方程的解;
(2)分式方程去分母得:1+3x﹣6=x﹣k,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:2﹣k=1,解得:k=1.
本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
16、(1)分;(2)人;(3)80分
【解析】
(1)根据算术平均数的定义列式计算可得;
(2)总人数乘以A、B、C等级所占百分比即可;
(3)根据中位数的定义求解即可.
【详解】
解:(1)一班参赛选手的(分)
(2)二班成绩在级以上(含级)(人)
(3)二班、人数占,
参赛学生共有20人,因此中位数落在C级,
二班参赛选手成绩的中位数为80分.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
17、(1)作图见解析;(2)证明见解析;
【解析】
(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
【详解】
解:(1)如图:
(2)∵四边形ABCD为矩形,
∴AD∥BC,
∴∠ADB=∠CBD,
∵EF垂直平分线段BD,
∴BO=DO,
在△DEO和三角形BFO中,
,
∴△DEO≌△BFO(ASA),
∴DE=BF.
考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
18、(1)作图见解析;(2)15,16或1.
【解析】
(1)①过相邻两边上的点作出直线即可求解;
②过一个顶点和相邻边上的点作出直线即可求解;
③过相邻两边非公共顶点作出直线即可求解;
(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.
【详解】
如图所示:
设新多边形的边数为n,
则,
解得,
若截去一个角后边数增加1,则原多边形边数为15,
若截去一个角后边数不变,则原多边形边数为16,
若截去一个角后边数减少1,则原多边形边数为1,
故原多边形的边数可以为15,16或1.
本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10.
【解析】
根据题意可得∠BAC1=90°,根据旋转可知AC1=6,在RtΔBAC1中,利用勾股定理可求得BC1的长=.
【详解】
∵ΔABC绕点A逆时针旋转60°得到ΔAB1C1
∴AC=AC1,∠CAC1=60°,
∵AB=8,AC=6,∠BAC=30°,
∴∠BAC1=90°,AB=8,AC1=6,
∴在RtΔBAC1中,BC1的长=,
故答案为:10.
本题考查了图形的旋转和勾股定理,通过理解题意将∠BAC1=90°找到即可解题.
20、2
【解析】
如图,设直线y=x+b与x轴交于点C,由直线的解析式是y=x+b,可得OB=OC=b,继而得∠BCA=45°,再根据三角形外角的性质结合∠α=75°可求得∠BAC=30°,从而可得AB=2OB=2b,根据点A的坐标可得OA的长,在Rt△BAO中,根据勾股定理即可得解.
【详解】
设直线y=x+b与x轴交于点C,如图所示,
∵直线的解析式是y=x+b,
∴OB=OC=b,则∠BCA=45°;
又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC,
∴∠BAC=30°,
又∵∠BOA=90°,
∴AB=2OB=2b,
而点A的坐标是(,0),
∴OA=,
在Rt△BAO中,AB2=OB2+OA2,
即(2b)2=b2+()2,
∴b=2,
故答案为:2.
本题考查了一次函数的性质、勾股定理的应用、三角形外角的性质等,求得∠BAC=30°是解答本题的关键.
21、≠3
【解析】
解:根据题意得x-3≠0,即x≠3
故答案为:≠3
22、﹣1<b<1
【解析】
由题意,G(-2,3),M(2,-3),根据等差点的定义可知,当直线y=x+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P是等差点,求出直线经过点G或M时的b的值即可判断.
【详解】
解:由题意,G(-2,3),M(2,-3),
根据等差点的定义可知,当直线y=x+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P是等差点,
当直线y=x+b经过点G(-2,3)时,b=1,
当直线y=x+b经过点M(2,-3)时,b=-1,
∴满足条件的b的范围为:-1<b<1.
故答案为:-1<b<1.
本题考查一次函数图象上点的特征、矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.
23、
【解析】
根据题意可知15个字母里a出现了2次,所以字母“a”出现的频率是.故答案为.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)2003
【解析】
(1)由△=(2k)2-4×1×(k2-1)=4>0可得答案;
(2)将x=3代入方程得k2+6k=-8,代入原式计算可得.
【详解】
解:(1),
无论取何值时,方程总有两个不相等的实数根;
(2)因为方程有一个根为,
,即
本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.
25、,4-2.
【解析】
【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把x的值代入进行计算即可得.
【详解】原式=()÷
=
=
=,
当x=2时,原式===2(2-)=4-2.
【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.
26、(1)AD=3;(2)S△ABC=9+3.
【解析】
试题分析:(1)根据三角形内角和可得∠DAC=45°,根据等角对等边可得AD=CD,然后再根据勾股定理可计算出AD的长;
(2)根据三角形内角和可得∠BAD=30°,再根据直角三角形的性质可得AB=2BD,然后利用勾股定理计算出BD的长,进而可得BC的长,然后利用三角形的面积公式计算即可.
解:(1)∵∠C=45°,AD是△ABC的边BC上的高,∴∠DAC=45°,∴AD=CD.
∵AC2=AD2+CD2,∴62=2AD2,∴AD=3
(2)在Rt△ADB中,∵∠B=60°,∴∠BAD=30°,∴AB=2BD.
∵AB2=BD2+AD2,∴(2BD)2=BD2+AD2,BD=.
∴S△ABC=BC·AD= (BD+DC)·AD=×(+3)×3=9+3.
题号
一
二
三
四
五
总分
得分
2024-2025学年陕西省合阳城关中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年陕西省合阳城关中学九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省湛江市霞山职业高级中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年广东省湛江市霞山职业高级中学数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。