2024-2025学年陕西省兴平市华兴中学九年级数学第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )
A.5元 B.10元 C.20元 D.10元或20元
2、(4分)如图,在矩形ABCD中,已知,,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则EF的长为
A.2B.3C.4D.5
3、(4分)如图,在△ABC中,∠ACB=90°,分别以AB、BC、AC为底边在△ABC外部画等腰直角三角形,三个等腰直角三角形的面积分别是S1、S2、S3,则S1、S2、S3之间的关系是( )
A.B.C.D.
4、(4分)能判定一个四边形是平行四边形的条件是( )
A.一组对角相等B.两条对角线互相平分
C.一组对边相等D.两条对角线互相垂直
5、(4分)已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是( )
A.B.C.D.
6、(4分)下列各式,计算结果正确的是( )
A.×=10B.+=C.3-=3D.÷=3
7、(4分)若代数式在实数范围内有意义,则实数的取值范围是( )
A.B.C.D.
8、(4分)如图,∠CAB=∠DAB下列条件中不能使△ABC≌△ABD的是( )
A.∠C=∠DB.∠ABC=∠ABDC.AC=ADD.BC=BD
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若n边形的每个内角都等于150°,则n=_____.
10、(4分)如图,点D是等边内部一点,,,.则的度数为=________°.
11、(4分)化简的结果是______.
12、(4分)计算:________.
13、(4分)小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.
三、解答题(本大题共5个小题,共48分)
14、(12分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元
(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?
(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?
15、(8分)如图,已知平行四边形ABCD,
(1)= ;(用的式子表示)
(2)= ;(用的式子表示)
(3)若AC⊥BD,||=4,||=6,则|+|= .
16、(8分)某乡镇组织300名干部、群众参加义务植树活动,下表是随机抽出的50名干部、群众义务植树的统计,根据图中的数据回答下列问题:
(1)这50个人平均每人植树多少棵?植树棵数的中位数是多少?
(2)估计该乡镇本次活动共植树多少棵?
17、(10分)阅读下面的解题过程,解答后面的问题:
如图,在平面直角坐标系中, , ,为线段的中点,求点的坐标;
解:分别过,做轴的平行线,过,做轴的平行线,两组平行线的交点如图所示,设,则,,
由图可知:
线段的中点的坐标为
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知,,则线段的中点坐标为
(2)平行四边形中,点,,的坐标分别为,,,利用中点坐标公式求点的坐标。
(3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。
18、(10分)如图,平行四边形ABCD,以点B为圆心,BA长为半径作圆弧,交对角线BD于点E,连结AE并延长交CD于点F,求证:DF=DE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若等式成立,则的取值范围是__________.
20、(4分)当二次根式的值最小时,=______.
21、(4分)如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE=5,折痕为 PQ,则 PQ 的长为_________cm.
22、(4分)如图,在己知的中,按以一下步骤作图:①分别以为圆心,大于的长为半径作弧,相交于两点;②作直线交于点,连接.若,,则的度数为___________.
23、(4分)直线y=3x-2不经过第________________象限.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数a的值为 ,所抽查的学生人数为 .
(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
(3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
25、(10分)如图,点在上,,,,,求的长.
26、(12分)已知关于的一元二次方程有两个实数根,.
(1)求实数的取值范围;
(2)若方程的一个根是1,求另一个根及的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
【详解】
设每件衬衫应降价x元,则每天可销售(1+2x)件,
根据题意得:(40-x)(1+2x)=110,
解得:x1=10,x2=1.
∵扩大销售,减少库存,
∴x=1.
故选C.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
2、B
【解析】
求出AC的长度;证明设为,得到;列出关于的方程,求出即可解决问题.
【详解】
解:四边形ABCD为矩形,
,;
由勾股定理得:,
;
由题意得:
,
;设为,
,;
由勾股定理得:
,解得:,
.
故选:B.
该题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答
3、B
【解析】
根据勾股定理可得AB2=AC2+BC2,再根据等腰直角三角形的性质和三角形的面积公式计算,即可得到答案.
【详解】
解:如图,在Rt△ABC中,由勾股定理,得:AB2=AC2+BC2,
∵△ABF、△BEC、△ADC都是等腰直角三角形,
∴S1=AF2=AB2,S2=EC2=BC2,S3=AD2=AC2,
∴S2+S3=BC2+AC2=(BC2+AC2)=AB2,
∴S2+S3=S1.
故选:B.
本题考查了等腰直角三角形的性质和勾股定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理和等腰直角三角形的性质是解题关键.
4、B
【解析】
根据平行四边形的判定定理进行判断即可.
【详解】
A. 两组对角分别相等的四边形是平行四边形,故本选项错误;
B. 两条对角线互相平分的四边形是平行四边形,故本选项正确;
C. 两组对边分别相等的四边形是平行四边形,故本选项错误;
D. 对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.
故选B.
本题考查平行四边形的判定,定理有:①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形.
5、C
【解析】
由已知条件知x-1>0,通过解不等式可以求得x>1.然后把不等式的解集表示在数轴上即可.
【详解】
∵一次函数y=x-1,
∴函数值y>0时,x-1>0,解得x>1,
表示在数轴上为:
故选:C
本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
6、D
【解析】
分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.
详解:A、原式=,所以A选项错误;
B、与不是同类二次根式,不能合并,所以B选项错误;
C、原式=2,所以C选项错误;
D、原式=,所以D选项正确.
故选:D.
点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
7、B
【解析】
直接利用分式有意义的条件进而得出答案.
【详解】
∵代数式在实数范围内有意义,
∴a-1≠0,
∴a≠1.
故选B.
此题主要考查了分式有意义的条件,正确把握定义是解题关键.
8、D
【解析】
根据题目中的已知条件AB=AB, ∠CAB=∠DAB,再结合题目中所给选项中的条件, 利用全等三角形的判定定理进行分析即可.
【详解】
有条件AB=AB, ∠CAB=∠DAB ,
A. 再加上∠C=∠D 可利用 AAS可证明 △ABC≌△ABD , 故此选项不合题意;
B. 再加上条件∠ABC=∠ABD可利用AAS可证明△ABC≌△ABD, 故此选项不合题意;
C. 再加上条件AC=AD 可利用SAS可证明△ABC≌△ABD, 故此选项不符合题意;
D.再加上条件BC=BD 不能证明△ABC≌△ABD , 故此选项合题意;
故选:D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据多边形的内角和定理:求解即可.
【详解】
解:由题意可得:,
解得.
故多边形是1边形.
故答案为:1.
主要考查了多边形的内角和定理.边形的内角和为:.此类题型直接根据内角和公式计算可得.
10、1
【解析】
将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.
【详解】
将△BCD绕点B逆时针旋转60°得到△ABD',
∴BD=BD',AD'=CD,
∴∠DBD'=60°,
∴△BDD'是等边三角形,
∴∠BDD'=60°,
∵BD=1,DC=2,AD=,
∴DD'=1,AD'=2,
在△ADD'中,AD'2=AD2+DD'2,
∴∠ADD'=90°,
∴∠ADB=60°+90°=1°,
故答案为1.
本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.
11、
【解析】
根据分式的减法和乘法可以解答本题.
【详解】
解:
,
故答案为:
本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.
12、2
【解析】
分别先计算绝对值,算术平方根,零次幂后计算得结果.
【详解】
解:原式.
故答案为:.
本题考查的是绝对值,算术平方根,零次幂的运算,掌握运算法则是解题关键.
13、79
【解析】
解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)
故答案为79
三、解答题(本大题共5个小题,共48分)
14、 (1)A型设备最多购买5台;(2)A型设备至少要购买4台.
【解析】
(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.
(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.
【详解】
(1)设购买A型号的x台,购买B型号的为(10﹣x)台,
则:12x+10(10﹣x)≤110,
解得:x≤5,
答:A型设备最多购买5台;
(2)设购买A型号的a台,购买B型号的为(10﹣a)台,
可得:240a+180(10﹣a)≥2040,
解得:a≥4,
∴A型设备至少要购买4台.
本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.
15、
【解析】
(1)(2)根据平面向量的加法法则计算即可解决问题;
(3)利用勾股定理计算即可;
【详解】
解:(1)= + =﹣;
(2)=+ =;
(3)∵AC⊥BD,||=4,||=6,
∴|+|=2 .
故答案为﹣,,2
此题考查平面向量的加法法则,勾股定理,解题关键在于掌握运算法则
16、(1)5,5;(2)1500.
【解析】
(1)利用加权平均数求得平均数即可;将所有数据从大到小排列即可得到中位数;
(2)根据(1)中所求得出植树总数即可.
【详解】
(1)平均数=(棵),
∵共50人,
∴中位数是第25和26个数的平均数,
∴中位数=(5+5)(棵),
(2)3005=1500(棵),
∴该乡镇本次活动共植树1500棵.
此题考查加权平均数、中位数的确定、样本估计总体,正确理解题意即可计算解答.
17、 (1)线段的中点坐标是;(2)点的坐标为;(3)符合条件的点坐标为或.
【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;
(2)根据AC、BD的中点重合,可得出,代入数据可得出点D的坐标;
(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.
【详解】
解:(1)AB中点坐标为,即AB的中点坐标是:(1,1);
(2)根据平行四边形的性质:对角线互相平分,可知、的中点重合,
由中点坐标公式可得:,
代入数据,得:,
解得:,,所以点的坐标为;
(3)当为该平行四边形一边时,则,对角线为、或、;
故可得:,或,.
故可得或,
,
或
代入到中,可得或.
综上,符合条件的点坐标为或.
本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,综合性较强.
18、见解析.
【解析】
欲证明DE=DF,只要证明∠DEF=∠DFE.
【详解】
证明:由作图可知:BA=BE,
∴∠BAE=∠BEA,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAE=∠DFE,
∵∠AEB=∠DEF,
∴∠DEF=∠DFE,
∴DE=DF.
本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式有意义的条件,列出不等式组,即可得解.
【详解】
根据题意,得
解得.
此题主要考查二次根式有意义的条件,熟练掌握,即可解题.
20、1
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
∵二次根式的值最小,
∴,解得:,
故答案为:1.
本题主要考查了二次根式的定义,正确把握定义是解题关键.
21、13
【解析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=
故答案是:13.
本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.
22、105°
【解析】
根据垂直平分线的性质,可知,BD=CD,进而,求得∠BCD的度数,由,,可知,∠ACD=80°,即可得到结果.
【详解】
根据尺规作图,可知,MN是线段BC的中垂线,
∴BD=CD,
∴∠B=∠BCD,
又∵,
∴∠A=∠ADC=50°,
∵∠B+∠BCD=∠ADC=50°,
∴∠BCD==25°,
∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,
∴=∠BCD+∠ACD=25°+80°=105°.
本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.
23、二
【解析】
根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
【详解】
解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
∴这条直线一定不经过第二象限.
故答案为:二
此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
二、解答题(本大题共3个小题,共30分)
24、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780
【解析】
(1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;
(2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;
(3)根据众数,平均数的定义即可得到结论;
(4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的比例列式计算即可.
【详解】
(1)a=1﹣20%﹣30%﹣5%=45%;
所抽查的学生人数为:3÷5%=60(人).
故答案为:45%,60;
(2)平均睡眠时间为8小时的人数为:60×30%=18(人);
(3)这部分学生的平均睡眠时间的众数是7人,
平均数7.2(小时);
(4)1200名睡眠不足(少于8小时)的学生数1200=780(人).
本题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解答本题的关键.
25、.
【解析】
首先证明,得到,设,于是得到,.在中,利用勾股定理可得结果.
【详解】
解:∵
∴∴∠ACE+∠BCF=∠CAE+∠ACE=90°,
∴∠CAE=∠FBC,
∴.
设.
∴.
∴,.
在中,可得.
解得,,(舍)
所以的长为.
本题考查相似三角形的判定与性质、勾股定理.利用三角形相似求出相似比是解决问题的关键.
26、(1)当时,原方程有两个实数根;(2)另一个根为0,的值为0.
【解析】
(1)根据一元二次方程根的判别式即可列出不等式进行求解;
(2)把方程的根代入原方程求出k,再进行求解即可.
【详解】
(1)∵原方程有两个实数根,
∴,
∴,∴,∴.
∴当时,原方程有两个实数根.
(2)把代入原方程得,得:,
∴原方程化为:,
解这个方程得,,
故另一个根为0,的值为0
此题主要考查一元二次方程的解,解题的关键是熟知根的判别式及方程的解法.
题号
一
二
三
四
五
总分
得分
批阅人
植树棵树
3
4
5
6
8
人数
8
15
12
7
8
2024-2025学年陕西省兴平市西郊高级中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年陕西省兴平市西郊高级中学九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省长沙广益中学九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2024-2025学年湖南省长沙广益中学九年级数学第一学期开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。