|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】01
    2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】02
    2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】

    展开
    这是一份2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)直角三角形中,两直角边分别是6和8.则斜边上的中线长是( )
    A.B.C.D.
    2、(4分)一次统计八(2)班若干名学生每分跳绳次数的频数分布直方图的次数(结果精确到个位)是( )
    A.数据不全无法计算B.103
    C.104D.105
    3、(4分)如图所示,四边形的对角线和相交于点,下列判断正确的是( )
    A.若,则是平行四边形
    B.若,则是平行四边形
    C.若,,则是平行四边形
    D.若,,则是平行四边形
    4、(4分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行
    A.8米B.10米C.12米D.14米
    5、(4分)一个射手连续射靶10次,其中3次射中10环,3次射中9环,4次射中8环.则该射手射中环数的中位数和众数分别为( )
    A.8,9B.9,8C.8.5,8D.8.5,9
    6、(4分)从、、、这四个代数式中任意抽取一个,下列事件中为确定事件的是( )
    A.抽到的是单项式B.抽到的是整式
    C.抽到的是分式D.抽到的是二次根式
    7、(4分)点A(-2,5)在反比例函数的图像上,则该函数图像位于( )
    A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限
    8、(4分)一个多边形的内角和与外角和相等,则这个多边形的边数为( )
    A.8B.6C.5D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为_____.
    10、(4分)如图,在平行四边形中,度,,,则______.
    11、(4分)一个不透明的布袋中装有分别标着数字1,2,3,4的四张卡片,现从袋中随机摸出两张卡片,则这两张卡片上的数字之和大于5的概率为_______.
    12、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
    13、(4分)秀水村的耕地面积是平方米,这个村的人均占地面积(单位:平方米)随这个村人数的变化而变化.则与的函数解析式为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
    (1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
    (2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
    15、(8分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
    (1)当时,求关于工的函数表达式,
    (2)求点的坐标.
    (3)求高铁在时间段行驶的路程.
    16、(8分)某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
    (1)每件童装降价多少元时,能更多让利于顾客并且商家平均每天能赢利1200元.
    (2)要想平均每天赢利2000元,可能吗?请说明理由.
    17、(10分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.
    (1)求证:△ABG≌△AFG;
    (2)判断BG与CG的数量关系,并证明你的结论;
    (3)作FH⊥CG于点H,求GH的长.
    18、(10分)已知与成反比例,且当时,.
    (1)求关于的函数表达式.
    (2)当时,的值是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若一组数据的平均数为17,方差为2,则另一组数据的平均数和方差分别为( )
    A.17,2B.18,2C.17,3D.18,3
    20、(4分)如图,正方形的边长为,点,分别在边,上,若是的中点,且,则的长为_______.
    21、(4分)已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.
    22、(4分)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .
    23、(4分)某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______
    二、解答题(本大题共3个小题,共30分)
    24、(8分)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
    (1)观察图象,直接写出日销售量的最大值;
    (2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
    (3)试比较第10天与第12天的销售金额哪天多?
    25、(10分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.
    26、(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
    (1)求证:四边形PMEN是平行四边形;
    (2) 当AP为何值时,四边形PMEN是菱形?并给出证明。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    解:由勾股定理得,斜边==10,
    所以,斜边上的中线长=×10=1.
    故选:C.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
    2、C
    【解析】
    根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);然后取每一小组中间的数值近似地作为该组内每位学生的每分钟跳绳次数,再用加权平均数求解即可.
    【详解】
    解:根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);所以这若干名学生每分钟跳绳次数的平均数=(62×2+87×4+112×6+137×2)÷15≈103.67≈104,
    故选C.
    本题考查学生读取频数分布直方图的能力和利用统计图获取信息的能力.对此类问题,必须认真观察题目所给的统计图并认真的思考分析,才能作出正确的判断,从而解决问题.
    3、D
    【解析】
    若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.
    【详解】
    ∵AO=OC,BO=OD,
    ∴四边形的对角线互相平分
    所以D能判定ABCD是平行四边形.
    故选D.
    此题考查平行四边形的判定,解题关键在于掌握判定定理.
    4、B
    【解析】
    试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
    如图,设大树高为AB=10米,小树高为CD=4米,
    过C点作CE⊥AB于E,则EBDC是矩形,连接AC,
    ∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,
    在Rt△AEC中,(米).故选B.
    5、B
    【解析】
    根据中位数和众数的定义求解.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【详解】
    解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8;
    这10个数按大小顺序排列后中间两个数是1和1,所以这组数据的中位数是1.
    故选:B.
    本题考查众数和中位数.掌握中位数和众数的定义是关键.
    6、D
    【解析】
    根据题意找出下列事件中为确定事件,掌握单项式、整式、分式、二次根式的定义以此分析选项,采用排除法得出最终正确选项.
    【详解】
    A. 不是单项式,错误;
    B. 不是整式,错误;
    C.、、不是分式,错误;
    D. 、、、都是二次根式,正确.
    故选D.
    此题考查单项式、整式、分式、二次根式,解题关键在于掌握单项式、整式、分式、二次根式的定义.
    7、D
    【解析】
    根据反比例函数上点的坐标特点可得k=-10,再根据反比例函数的性质可得函数图像位于第二、四象限.
    【详解】
    ∵反比例函数的图像经过点(-2,5),
    ∴k=(-2)×5=-10,
    ∵-10<0,
    ∴该函数位于第二、四象限,
    故选:D.
    本题考查反比例函数上的点坐标的特点,反比例函数上的点横、纵坐标之积等于k;本题也考查了反比例函数的性质,对于反比例函数,当k大于0时,图像位于第一、三象限,当k小于0,图像位于第二、四象限.
    8、D
    【解析】
    利用多边形的内角和与外角和公式列出方程,然后解方程即可.
    【详解】
    设多边形的边数为n,根据题意
    (n-2)•180°=360°,
    解得n=1.
    故选:D.
    本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
    【详解】
    在Rt△ABC中,∠A=30°,BC=1,
    ∴AB=2BC=2,
    ∵点D,E分别是直角边BC,AC的中点,
    ∴DE=AB=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    10、
    【解析】
    依据平行四边形的对角互相平分可得AO=3cm,在Rt△ABO中利用勾股定理可求AB长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AO=AC=3cm.
    在Rt△ABO中,OB=6cm,AO=3cm,
    利用勾股定可得AB=.
    故答案为3.
    本题主要考查了平行四边形的性质、勾股定理,利用平行四边形的对角线互相平分求解三角形中某些线段的长度是解决这类问题通常的方法.
    11、
    【解析】
    根据题意先画出树状图,求出所有出现的情况数,再根据概率公式即可得出答案.
    【详解】
    根据题意画树状图如下:
    共有12种情况,两张卡片上的数字之和大于5的有4种,
    则这两张卡片上的数字之和大于5的概率为;
    故答案为:.
    此题考查列表法与树状图法,解题关键在于题意画树状图.
    12、175°
    【解析】
    如图所示,∵∠ADC、∠BCD的平分线交于点O1,
    ∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
    ∵∠O1DC、∠O1CD的平分线交于点O2,
    ∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
    同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
    由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
    ∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
    又∵四边形ABCD中,∠DAB+∠ABC=200°,
    ∴∠ADC+∠DCB=160°,
    ∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
    故答案为175°.
    13、
    【解析】
    人均耕地面积即耕地总面积除以人数,y随着n的变化而变化,因此,n是自变量,y是因变量。
    【详解】
    根据题意可列出
    此题考查根据实际问题列反比例函数关系式,解题关键在于列出解析式
    三、解答题(本大题共5个小题,共48分)
    14、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.
    【解析】
    试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
    (2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
    试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).
    故答案为10;2.
    (2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).
    (3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.
    答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.
    点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
    15、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
    【解析】
    (1)根据函数图象中的数据可以求得OA段对应的函数解析式;
    (2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
    (3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
    【详解】
    (1)当时,
    设关于的函数表达式是,
    ,得,
    即当,关于的函数表达式是.
    (2)设段对应的函数解析式为,

    即段对应的函数表达式为.
    当时,,
    即点的坐标为.
    (3)(千米),
    答:高铁在时段共行驶了千米.
    考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
    16、(1)每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元;(2)不可能,理由详见解析.
    【解析】
    (1)设每件童装降价x元,则销售量为(20+2x)件,根据总利润=每件利润 销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论
    (2)设每件童装降价元,则销售量为(20+2y)件,根据总利润=每件利润 销售数量,即可得出关于y的一元二次方程,由根的判别式A<0可得出原方程无解,进而即可得出不可能每天盈利2000元.
    【详解】
    (1)设每件童装降价元时,能更多让利于顾客并且商家平均每天能赢利1200元,得:

    ∴,
    ∵要更多让利于顾客
    ∴更符合题意
    答:每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元.
    (2)不可能;
    设每件桶童装降价元,则销售量为件,根据题意得:
    整理得:

    ∴该方程无实数解
    ∴不可能每天盈利2000元.
    本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    17、(1)见解析;(2)BG=CG;(3)GH=.
    【解析】
    (1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;
    (2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;
    (3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.
    【详解】
    (1)∵正方形ABCD的边长为6,CE=2DE,
    ∴DE=2,EC=4,
    ∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
    ∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
    在Rt△ABG和Rt△AFG中
    ∵ ,
    ∴Rt△ABG≌Rt△AFG(HL);
    (2)∵Rt△ABG≌Rt△AFG,
    ∴GB=GF,∠BAG=∠FAG,
    ∴∠GAE=∠FAE+∠FAG=∠BAD=45°,
    设BG=x,则GF=x,CG=BC﹣BG=6﹣x,
    在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
    ∵CG2+CE2=GE2,
    ∴(6﹣x)2+42=(x+2)2,解得x=3,
    ∴BG=3,CG=6﹣3=3
    ∴BG=CG;
    (3)由(2)知BG=FG=CG=3,
    ∵CE=4,
    ∴GE=5,
    ∵FH⊥CG,
    ∴∠FHG=∠ECG=90°,
    ∴FH∥EC,
    ∴△FHG∽△ECG,
    则=,即=,
    解得GH=.
    本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.
    18、(1);(2)
    【解析】
    (1)设(为常数,),把,代入求出k的值即可;
    (2)把代入(1)中求得的解析式即可求出的值.
    【详解】
    解:(1)与成反比例可知,
    可设(为常数,),
    当时,,
    解得,
    关于的函数表达式;
    (2)把代入,得
    .
    本题考查了待定系数法求反比例函数解析式,以及求反比例函数值,熟练掌握待定系数法是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、B
    【解析】
    根据平均数和方差的变化规律,即可得出答案.
    【详解】
    ∵数据x1+1,x1+1,,xn+1的平均数为17,
    ∴x1+1,x1+1,,xn+1的平均数为18,
    ∵数据x1+1,x1+1,,xn+1的方差为1,
    ∴数据x1+1,x1+1,,xn+1的方差不变,还是1;
    故选B.
    本题考查了方差与平均数,用到的知识点:如果一组数据x1,x1,,xn的平均数为,方差为S1,那么另一组数据ax1+b,ax1+b,,axn+b的平均数为a+b,方差为a1S1.
    20、4
    【解析】
    延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.
    【详解】
    解:延长F至G,使CG=AE,连接DG、EF,如图所示:
    ∵四边形ABCD是正方形,
    ∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
    ∴∠DCG=90°,
    在△ADE和△CDG中,,
    ∴△ADE≌△CDG(SAS),
    ∴DE=DG,∠ADE=∠CDG,
    ∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
    ∵∠EDF=45°,
    ∴∠GDF=45°,
    在△EDF和△GDF中,,
    ∴△EDF≌△GDF(SAS),
    ∴EF=GF,
    ∵F是BC的中点,
    ∴BF=CF=3,
    设AE=CG=x,则EF=GF=CF+CG=3+x,
    在Rt△BEF中,由勾股定理得:,
    解得:x=2,即AE=2,
    ∴BE=AB-AE=6-2=4.
    此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.
    21、17
    【解析】
    根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.
    【详解】
    依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,
    故三边长为3,7,7故周长为17.
    此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.
    22、3或﹣3
    【解析】
    试题分析:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,
    ∴(x﹣3)(x﹣2)=0,解得:x=3或2.
    ①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;
    ②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.
    23、100(1+x)2=179
    【解析】
    由两次涨价的百分比平均每次为x,结合商品原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.
    【详解】
    解:∵两次涨价平均每次的百分比为x,
    ∴100(1+x)2=179.
    故答案为:100(1+x)2=179.
    本题考查了一元二次方程的应用.
    二、解答题(本大题共3个小题,共30分)
    24、解:(1)日销售量的最大值为120千克.
    (2)
    (3)第10天的销售金额多.
    【解析】
    试题分析:(1)观察图象,即可求得日销售量的最大值;
    (2)分别从0≤x≤12时与12<x≤20去分析,利用待定系数法即可求得小明家樱桃的日销售量y与上市时间x的函数解析式;
    (3)第10天和第12天在第5天和第15天之间,当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b,由点(5,32),(15,12)在z=kx+b的图象上,利用待定系数法即可求得樱桃价格与上市时间的函数解析式,继而求得10天与第12天的销售金额.
    试题解析:(1)由图象得:120千克,
    (2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=k1x,
    ∵直线y=k1x过点(12,120),
    ∴k1=10,
    ∴函数解析式为y=10x,
    当12<x≤20,设日销售量与上市时间的函数解析式为y=k2x+b,
    ∵点(12,120),(20,0)在y=k2x+b的图象上,
    ∴,
    解得:
    ∴函数解析式为y=-15x+300,
    ∴小明家樱桃的日销售量y与上市时间x的函数解析式为:;
    (3)∵第10天和第12天在第5天和第15天之间,
    ∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=mx+n,
    ∵点(5,32),(15,12)在z=mx+n的图象上,
    ∴,
    解得:,
    ∴函数解析式为z=-2x+42,
    当x=10时,y=10×10=100,z=-2×10+42=22,
    销售金额为:100×22=2200(元),
    当x=12时,y=120,z=-2×12+42=18,
    销售金额为:120×18=2160(元),
    ∵2200>2160,
    ∴第10天的销售金额多.
    考点:一次函数的应用.
    25、见解析
    【解析】
    由ASA证明△AOE≌△COF,得出对应边相等EO=FO,证出四边形AFCE为平行四边形,再由FE⊥AC,即可得出结论.
    【详解】
    解:证明:因为四边形的矩形

    因为平分
    .

    所以四边形是平行四边形
    所以四边形是菱形(对角线互相垂直的平行四边形是菱形)
    本题考查了矩形的性质、菱形的判定方法、平行四边形的判定方法、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.
    26、(1)证明见解析;(2)当PA=5时,四边形PMEN为菱形,理由见解析.
    【解析】
    分析:(1)用三角形的中位线定理证明四边形PMEN的两组对边分别平行;(2)由(1)得四边形PMEN是平行四边形,只需证PM=PN,即PC=PD,故要证△APD≌△BPC.
    详解:(1)∵M,E分别为PD,CD的中点,∴ME∥PC,
    同理可证:ME∥PD,
    ∴四边形PMEN为平行四边形;
    (2)当PA=5时,四边形PMEN为菱形.
    理由:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,
    ∵AP=5,AB=CD=10,∴AP=BP,
    在△APD和△BPC中,
    AP=BP,∠A=∠B,AD=BC,
    ∴△APD≌△BPC(SAS),∴PD=PC,
    ∵M,N,E分别是PD,PC,CD的中点,
    ∴EN=PM=PD,PN=EM=PC,∴PM=EM=EN=PN,
    ∴四边形PMEN是菱形.
    点睛:本题考查了平行四边形,菱形的判定和矩形的性质,三角形的中位定理反应了两条线段之间的数量关系与位置关系,所以,当题中有多个中点时,常常考虑用三角形的中位线来解题.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年陕西省西安工业大附属中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年陕西省西安工业大附属中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省商洛市数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年陕西省商洛市数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省商洛市洛南县九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年陕西省商洛市洛南县九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map