终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】第1页
    2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】第2页
    2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】

    展开

    这是一份2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,数轴上点A表示的数是-1,原点O是线段AB的中点,∠BAC=30,∠ABC=90°,以点A为圆心,AC长为半径画弧,交数轴于点D,则点D表示的数是
    A.B.C.D.
    2、(4分)如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是( )
    A.四边形ACDF是平行四边形
    B.当点E为BC中点时,四边形ACDF是矩形
    C.当点B与点E重合时,四边形ACDF是菱形
    D.四边形ACDF不可能是正方形
    3、(4分)如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是( )
    A.4+3B.2C.2+6D.4
    4、(4分)把一元二次方程x2﹣6x+1=0配方成(x+m)2=n的形式,正确的是( )
    A.(x+3)2=10 B.(x﹣3)2=10 C.(x+3)2=8 D.(x﹣3)2=8
    5、(4分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )
    A.12B.11C.10D.9
    6、(4分)已知 x=-1 是一元二次方程 x2+px+q=0 的一个根,则代数式 p-q 的值是( )
    A.1B.-1C.2D.-2
    7、(4分)下列式子是分式的是( )
    A.B.C.D.
    8、(4分)若菱形的周长为8,高为1,则菱形两邻角的度数比为( )
    A.3∶1B.4∶1C.5∶1D.6∶1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若分式的值为0,则x的值为_______.
    10、(4分)不等式2x-1>x解集是_________.
    11、(4分)等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.
    12、(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.
    13、(4分)如图,,两条直线与这三条平行线分别交于点、、和、、.已知,,,的长为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。
    (1)小李从乙地返回甲地用了多少小时?
    (2)求小李出发小时后距离甲地多远?
    15、(8分)已知一次函数的图像经过点(—2,-2)和点(2,4)
    (1)求这个函数的解析式;
    (2)求这个函数的图像与y轴的交点坐标.
    16、(8分)已知a+b=2,ab=2,求的值.
    17、(10分)在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°.
    (1)求证:△AOB是等边三角形;
    (2)求∠BOE的度数.
    18、(10分)已知二次函数
    (1)若该函数与轴的一个交点为,求的值及该函数与轴的另一交点坐标;
    (2)不论取何实数,该函数总经过一个定点,
    ①求出这个定点坐标;
    ②证明这个定点就是所有抛物线顶点中纵坐标最大的点。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.
    20、(4分)如图, ,矩形ABCD的顶点A、B分别在OM、ON上,当B在边ON上运动时,A 随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,则运动过程中,点C到点O的最大距离为___________.
    21、(4分)若,则的值为________.
    22、(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.
    23、(4分)已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使,请写出相应的BF的长:BF=_________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)△ABC在平面直角坐标系中的位置如图所示.
    (1)将△ABC向左平移4个单位长度后得到,点、、分别是A、B、C的对应点,请画出,并写出的坐标;
    (2)将△ABC绕点O顺时针旋转90°,得到,点、、分别是A、B、C的对应点,请画出,并写出的坐标.
    25、(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.
    根据统计图解答下列问题:
    (1)本次测试的学生中,得4分的学生有多少人?
    (2)本次测试的平均分是多少分?
    (3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?
    26、(12分)已知一次函数y=kx+1经过点(1,2),O为坐标轴原点.
    (1)求k的值.
    (2)点P是x轴上一点,且满足∠APO=45°,直接写出P点坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    首先求得AB的长,然后在直角△ABC中利用三角函数即可求得AC的长,则AD=AC即可求得,然后求得OD即可.
    【详解】
    ∵点A表示-1,O是AB的中点,
    ∴OA=OB=1,
    ∴AB=2,
    在Rt△ABC中,AC=,
    ∴AD=AC=,
    ∴OD=-1.
    故选:D.
    本题考查了三角函数,在直角三角形中利用三角函数求得AC的长是关键.
    2、B
    【解析】
    根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.
    解:∵∠ACB=∠EFD=30°,
    ∴AC∥DF,
    ∵AC=DF,
    ∴四边形AFDC是平行四边形,
    选项A正确;
    当E是BC中点时,无法证明∠ACD=90°,
    选项B错误;
    B、E重合时,易证FA=FD,
    ∵四边形AFDC是平行四边形,
    ∴四边形AFDC是菱形,
    选项C正确;
    当四边相等时,∠AFD=60°,∠FAC=120°,
    ∴四边形AFDC不可能是正方形,
    选项D正确.
    故选B.
    点睛:本题考查平行四边形、矩形、菱形、正方形的判定.熟练应用平行四边形、矩形、菱形、正方形的判定方法进行证明是解题的关键.
    3、B
    【解析】
    将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.
    【详解】
    解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.
    由旋转的性质可知:△PFC是等边三角形,
    ∴PC=PF,
    ∵PB=EF,
    ∴PA+PB+PC=PA+PF+EF,
    ∴当A、P、F、E共线时,PA+PB+PC的值最小,
    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,
    ∴tan∠ACB==,
    ∴∠ACB=30°,AC=2AB=,
    ∵∠BCE=60°,
    ∴∠ACE=90°,
    ∴AE==.
    故选B.
    本题考查轴对称—最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.
    4、D
    【解析】
    直接利用配方法进行求解即可.
    【详解】
    解:移项可得:x2-6x=-1,
    两边加9可得:x2-6x+9=-1+9,
    配方可得:(x-3)2=8,
    故选:D.
    本题主要考查配方法的应用,熟练掌握配方的过程是解题的关键.
    5、D
    【解析】
    根据三角形中位线定理分别求出DE、EF、DF,计算即可.
    【详解】
    ∵点D,E分别AB、BC的中点,
    ∴DE=AC=3.5,
    同理,DF=BC=3,EF=AB=2.5,
    ∴△DEF的周长=DE+EF+DF=9,
    故选D.
    本题考查的是三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    6、A
    【解析】
    由一元二次方程的解的定义,把x=-1代入已知方程,化简整理即可求得结果.
    【详解】
    解:∵x=-1 是一元二次方程 x2+px+q=0 的一个根,
    ∴,即,
    ∴p-q =1.
    故选A.
    本题考查了一元二次方程的解的定义,此类问题的一般思路:见解代入,整理化简.
    7、B
    【解析】
    根据分母中含有字母的式子是分式,可得答案.
    【详解】
    解:是分式,
    故选:B.
    本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.
    8、C
    【解析】
    先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.
    【详解】
    解:如图所示:
    ∵四边形ABCD是菱形,菱形的周长为8,
    ∴AB=BC=CD=DA=2,∠DAB+∠B=180°,
    ∵AE=1,AE⊥BC,
    ∴AE=AB,
    ∴∠B=30°,
    ∴∠DAB=150°,
    ∴∠DAB:∠B=5:1;
    故选:C.
    本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    根据分式的值为零的条件可以求出x的值.
    【详解】
    解:根据题意得:,
    解得:x=-1.
    故答案为:-1.
    若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
    10、x>1
    【解析】
    将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.
    【详解】
    解:2x-1>x,
    移项得:2x-x>1,
    合并得:x>1,
    则原不等式的解集为x>1.
    故答案为:x>1
    此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.
    11、12.
    【解析】
    因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.
    【详解】
    解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
    当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;
    ∴顶角的度数为80°或20°.
    故答案为80°或20°.
    本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.
    12、84或24
    【解析】
    分两种情况考虑:
    ①当△ABC为锐角三角形时,如图1所示,
    ∵AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    在Rt△ABD中,AB=15,AD=12,
    根据勾股定理得:BD==9,
    在Rt△ADC中,AC=13,AD=12,
    根据勾股定理得:DC==5,
    ∴BC=BD+DC=9+5=14,
    则S△ABC=BC⋅AD=84;
    ②当△ABC为钝角三角形时,如图2所示,
    ∵AD⊥BC,
    ∴∠ADB=90°,
    在Rt△ABD中,AB=15,AD=12,
    根据勾股定理得:BD==9,
    在Rt△ADC中,AC=13,AD=12,
    根据勾股定理得:DC==5,
    ∴BC=BD−DC=9−5=4,
    则S△ABC=BC⋅AD=24.
    综上,△ABC的面积为24或84.
    故答案为24或84.
    点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.
    13、
    【解析】
    根据平行线分线段成比例定理得到比例式,代入计算即可.
    【详解】
    解:∵l1∥l2∥l3,
    ∴,即,
    解得,EF=,
    故答案为:.
    本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)小时;(2)小李出发小时后距离甲地千米;
    【解析】
    (1)根据题意可以得到小李从乙地返回甲地用了多少小时;
    (2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;
    【详解】
    解:(1)由题意可得, (小时),
    答:小李从乙地返回甲地用了小时;
    (2)设小李返回时直线解析式为,
    将分别代入得, ,解得,,
    ,当时,,
    答:小李出发小时后距离甲地千米;
    此题考查一次函数的应用,解题关键在于列出方程
    15、(1);(2)(0,1)
    【解析】
    设函数关系式为,由图像经过点(—2,-2)和点(2,4)根据待定系数法即可求得这个函数的解析式,再把x=0代入求得的函数解析式即可得到这个函数的图像与y轴的交点坐标.
    【详解】
    解:(1)设函数关系式为
    ∵图像经过点(—2,-2)和点(2,4)
    ∴,解得
    ∴这个函数的解析式为;
    (2)在中,当x=0时,
    ∴这个函数的图像与y轴的交点坐标为(0,1).
    点睛:待定系数法求函数关系式是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
    16、1
    【解析】
    根据因式分解,首先将整式提取公因式,在采用完全平方公式合,在代入计算即可.
    【详解】
    解:原式=a3b+a2b2+ab3
    =ab(a2+2ab+b2)
    =ab(a+b)2,
    ∵a+b=2,ab=2,
    ∴原式=×2×1=1.
    本题主要考查因式分解的代数计算,关键在于整式的因式分解.
    17、 (1)证明见解析;(2)∠BOE=75°.
    【解析】
    (1)由矩形ABCD,得到OA=OB,根据AE平分∠BAD,∠CAE=15°,即可证明△AOB是等边三角形;
    (2)由等边三角形的性质,推出AB=OB,求出∠OBC的度数,根据等边三角形和等腰直角三角形的性质得到OB=BE,然后可求出∠BOE.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴OA=OB,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE=45°,
    ∵∠CAE=15°,
    ∴∠BAC=60°,
    ∴△AOB是等边三角形.
    (2)∵△AOB是等边三角形,
    ∴AB=OB,∠ABO=60°,
    ∴∠OBC=90°﹣60°=30°,
    ∵∠BAE=∠BEA=45°
    ∵AB=OB=BE,
    ∴∠BOE=∠BEO=(180°﹣30°)=75°.
    本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,角平分线的性质,等腰三角形的判定等知识点.
    18、(1);(2)①(2,6);②点(2,6)
    【解析】
    (1)将代入,求得a的值,然后再确定与x轴的另一交点.
    (2)①整理,使a的系数为0,从而确定x,进而确定y,即可确定定点.
    ②先确定顶点坐标,继而根据二次函数的性质进行说明即可.
    【详解】
    解:(1)代入得,
    ∴,
    ∴,
    ∴另一交点为.
    (2)①整理得 ,
    令代入,得:,
    故定点为,
    ②∵,
    ∴顶点为,
    又∵,
    ∴时纵坐标有最大值6,
    ∴顶点坐标为是所有顶点中纵坐标最大的点.
    本题考查了二次函数图像的性质及整式的变形,其中根据需要对整式进行变形是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=
    【解析】
    先根据条件算出注满容器还需注水200m3 , 根据注水时间=容积÷注水速度,据此列出函数式即可.
    【详解】
    解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.
    本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.
    20、
    【解析】
    取AB的中点E,连接OE、CE、OC,根据三角形的任意两边之和大于第三边可知当O、C、E三点共线时,点C到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
    【详解】
    如图,取AB的中点E,连接OE、CE、OC,∵OC⩽OE+CE,
    ∴当O、C. E三点共线时,点C到点O的距离最大,
    此时,∵AB=2,BC=1,
    ∴OE=AE=AB=1,
    CE=,
    ∴OC的最大值为:
    此题考查直角三角形斜边上的中线,勾股定理,解题关键在于做辅助线
    21、
    【解析】
    根据比例设a=2k,b=3k,然后代入比例式进行计算即可得解.
    【详解】
    ∵,
    ∴设a=2k,b=3k,
    ∴ .
    故答案为:
    此题考查比例的性质,掌握运算法则是解题关键
    22、1
    【解析】
    过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.
    【详解】
    解:过A作x轴垂线,过B作x轴垂线,
    点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
    ∴A(1,1),B(2,),
    ∵AC∥BD∥y轴,
    ∴C(1,k),D(2,),
    ∵△OAC与△ABD的面积之和为,

    S△ABD=S梯形AMND﹣S梯形AAMNB,

    ∴k=1,
    故答案为1.
    本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.
    23、2或4.
    【解析】
    过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.
    【详解】
    如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
    所以BE=DF1,且BE、DF1上的高相等,
    此时S△DCF1=S△BDE;
    过点D作DF2⊥BD,
    ∵∠ABC=60°,F1D∥BE,
    ∴∠F2F1D=∠ABC=60°,
    ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
    ∴∠F1DF2=∠ABC=60°,
    ∴△DF1F2是等边三角形,
    ∴DF1=DF2,
    ∵BD=CD,∠ABC=60°,点D是角平分线上一点,
    ∴∠DBC=∠DCB=×60°=30°,
    ∴∠CDF1=180°-∠BCD=180°-30°=150°,
    ∠CDF2=360°-150°-60°=150°,
    ∴∠CDF1=∠CDF2,
    ∵在△CDF1和△CDF2中,

    ∴△CDF1≌△CDF2(SAS),
    ∴点F2也是所求的点,
    ∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
    ∴∠DBC=∠BDE=∠ABD=×60°=30°,
    又∵BD=6,
    ∴BE=×6÷cs30°=3÷=2,
    ∴BF1=BF2=BF1+F1F2=2+2=4,
    故BF的长为2或4.
    故答案为:2或4.
    本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(1)画图见详解,C1的坐标(−1,4);(2),画图见详解,C2的坐标(4,−3).
    【解析】
    (1)分别作出A,B,C的对应点A1,B1,C1即可;
    (2)分别作出A,B,C的对应点A2,B2,C2即可.
    【详解】
    解:(1)如图△A1B1C1即为所求,C1的坐标(−1,4);
    (2)如图△A2B2C2即为所求,C2的坐标(4,−3).
    本题考查作图−平移变换,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    25、(1)25人
    (2)37分
    (3)第二次测试中得4分的学生有15人、得5分的学生有30人.
    【解析】
    (1)根据频数、频率和总量的关系:频数=总量频率计算即可.
    (2)平均数是指在一组数据中所有数据之和再除以数据的个数,据此计算即可.
    (3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据“得4分和5分的人数共有45人”和“平均分比第一次提高了0.8分”列方程组求解即可.
    【详解】
    解:(1)本次测试的学生中,得4分的学生有人.
    (2)本次测试的平均分平均分(分).
    (3)设第二次测试中得4分的学生有x人、得5分的学生有y人,
    根据题意,得:,
    解得:.
    答:第二次测试中得4分的学生有15人、得5分的学生有30人.
    26、(1)1(2)P(3,0)或P(−1,0).
    【解析】
    (1)直接把点A(1,2)代入一次函数y=kx+1,求出k的值即可;
    (2)求出直线y=x+1与x轴的交点,进而可得出结论.
    【详解】
    (1)∵一次函数y=kx+1经过A(1,2),
    ∴2=k+1,
    ∴k=1;
    (2)如图所示,
    ∵k=1,
    ∴一次函数的解析式为y=x+1,
    ∴B(0,1),C(−1,0),
    ∴∠ACO=45°,
    ∴P (−1,0);
    ∴P关于直线x=1与P对称,
    ∴P (3,0).
    ∴P(3,0)或P(−1,0).
    此题考查一次函数图象上点的坐标特征,解题关键在于作辅助线
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】:

    这是一份2024-2025学年陕西省商洛九上数学开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】:

    这是一份2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省安康市汉滨2023-2024学年数学九上期末综合测试模拟试题含答案:

    这是一份陕西省安康市汉滨2023-2024学年数学九上期末综合测试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的工件的主视图是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map