2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式8﹣4x≥0的解集在数轴上表示为( )
A.
B.
C.
D.
2、(4分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )
A.0个B.1个C.2个D.3个
3、(4分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30°B.36°C.54°D.72°
4、(4分)直线与轴的交点坐标是( )
A.B.C.D.
5、(4分)关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,则k的取值范围( )
A.B.且k≠0C.D.且k≠0
6、(4分)分式方程=有增根,则增根为( )
A.0B.1C.1或0D.﹣5
7、(4分)如图,矩形中,分别是线段的中点,,动点沿的路线由点运动到点,则的面积是动点运动的路径总长的函数,这个函数的大致图象可能是( )
A.B.C.D.
8、(4分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形中,,相交于点,平分交于点,若,则________.
10、(4分)正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)
11、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.
12、(4分)如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;
13、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算
(1)5﹣9+
(2)(2+)2﹣2.
15、(8分)在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.
(1)如图1,证明平行四边形ECFG为菱形;
(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;
(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.
16、(8分)如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)若EG=EH,AB=8,BC=1.求AE的长.
17、(10分)如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①AE为何值时四边形CEDF是矩形?为什么?
②AE为何值时四边形CEDF是菱形?为什么?
18、(10分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个有进水管与出水管的容器,从某时刻开始内只进水不出水,在随后的内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量单位:)与时间(单位)之间的关系如图所示:则时容器内的水量为__________.
20、(4分)如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.
21、(4分)已知,当=-1时,函数值为_____;
22、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
23、(4分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:
这20户家庭日用电量的众数、中位数分别是( )
A.6,6.5B.6,7C.6,7.5D.7,7.5
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数,.
(1)若方程的解是正数,求的取值范围;
(2)若以、为坐标的点在已知的两个一次函数图象上,求的值;
(3)若,求的值.
25、(10分)已知,,若,试求的值.
26、(12分)已知△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°.
(1)如图①,点D、E分别在线段AB、AC上. 请直接写出线段BD和CE的位置关系: ;
(2)将图①中的△ADE绕点A逆时针旋转到如图②的位置时,(1)中的结论是否成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)如图③,取BC的中点F,连接AF,当点D落在线段BC上时,发现AD恰好平分∠BAF,此时在线段AB上取一点H,使BH=2DF,连接HD,猜想线段HD与BC的位置关系并证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据不等式的基本性质求出此不等式的解集,在数轴上表示出来,再找出符合条件的选项即可.
【详解】
8﹣4x≥0
移项得,﹣4x≥﹣8,
系数化为1得,x≤1.
在数轴上表示为:
故选:C.
本题考查的是解一元一次不等式及在数轴上表示不等式的解集,解答此类题目时要注意实心圆点与空心圆点的区别.正确求出不等式的解集是解此题的关键.
2、D
【解析】
依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
在△APE和△AME中,
∠BAC=∠DAC
AE=AE
∠AEP=∠AEM,
∴△APE≌△AME(ASA),
故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中,AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,∴PM+PN=BD;
故②正确;
∵四边形ABCD是矩形,
∴AC⊥BD,
∴∠AOB=90°,
∵PE⊥AC,PF⊥BD,
∴∠OEP=∠EOF=∠OFP=90°,
∴四边形PEOF是矩形,
∴OE=PF,OF=PE,
在直角△OPF中,OE²+PE²=PO²,
∴PE²+PF²=PO²,
故③正确;
∴正确的有3个,
故选:D
本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.
3、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
4、A
【解析】
根据直线与x轴的交点,y=0时,求得的x的值,就是直线与x轴相交的横坐标,计算求解即可.
【详解】
解:当y=0时,可得
计算
所以直线与x轴的交点为:
故选A.
本题主要考查直线与坐标轴的相交问题,这是一次函数的常考点,与x轴相交,y=0,与y轴相交,则x=0.
5、B
【解析】
根据一元二次方程的定义和根的判别式得出k≠0且△=(-3)2-4k×1>0,求出即可.
【详解】
∵关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,
∴k≠0且△=(-3)2-4k×1>0,
解得:k<且k≠0,
故选B.
本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.
6、B
【解析】
分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的增根.
【详解】
=,
去分母得:6x=x+5,
解得:x=1,
经检验x=1是增根.
故选B.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
7、C
【解析】
根据题意分析△PAB的面积的变化趋势即可.
【详解】
根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为1.
故选C.
本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.
8、C
【解析】
由折叠的性质可得DE=BE,
设AE=xcm ,则BE=DE=(9-x)cm,
在Rt中,由勾股定理得:32+ x2=(9-x)2
解得:x=4,
∴AE=4cm,
∴S△ABE=×4×3=6(cm2),
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
判断出△ABE是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB=30°,再判断出△ABO是等边三角形,根据等边三角形的性质求出OB=AB,再求出OB=BE,然后根据等腰三角形两底角相等求出∠BOE=75°,再根据∠AOE=∠AOB+∠BOE计算即可得解.
【详解】
解:∵AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴∠AEB=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∵∠CAE=15°,
∴∠ACE=∠AEB-∠CAE=45°-15°=30°,
∴∠BAO=90°-30°=60°,
∵矩形中OA=OB,
∴△ABO是等边三角形,
∴OB=AB,∠ABO=∠AOB=60°,
∴OB=BE,
∵∠OBE=∠ABC-∠ABO=90°-60°=30°,
∴∠BOE=(180°-30°)=75°,
∴∠AOE=∠AOB+∠BOE,
=60°+75°,
=135°.
故答案为135°.
本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
10、
【解析】
分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].
详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),
∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,
又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,
∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).
故答案为(2n-1,2n-1).
点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.
11、1
【解析】
根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.
【详解】
根据折叠的性质知:BP=BC,
∴BN=BC=BP,
∵∠BNP=90°,
∴∠BPN=1°,
故答案为:1.
本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.
12、60
【解析】
先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.
【详解】
解:∵∠BAC=120°,AB=AC,
∴∠C= ==30°,
∵AC的垂直平分线交BC于D,
∴AD=CD,
∴∠C=∠CAD=30°,
∵∠ADB是△ACD的外角,
∴∠ADB=∠C+∠CAD=30°+30°=60°.
故答案为60°.
本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.
13、2
【解析】
解:这组数据的平均数为2,
有 (2+2+0-2+x+2)=2,
可求得x=2.
将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
其平均数即中位数是(2+2)÷2=2.
故答案是:2.
三、解答题(本大题共5个小题,共48分)
14、(1)9(2)9+2.
【解析】
分析:(1)、根据二次根式的化简法则将各式进行化简,然后进行求和得出答案;(2)、根据完全平方公式将括号去掉,然后进行计算得出答案.
详解:(1)原式=10﹣3+2=9;
(2)原式=9+4﹣2=9+2.
点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确二次根式的化简法则是解决这个问题的关键.
15、(1)证明见解析;
(2)∠BDM的度数为45°;
(3)∠BDG的度数为60°.
【解析】
(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;
(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;
(3)延长AB、FG交于H,连接HD,求证平行四边形AHFD为菱形,得出△ADH,△DHF为全等的等边三角形,证明△BHD≌△GFD,即可得出答案.
【详解】
(1)∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形.
(2)如图,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形,
∴∠BDM=45°;
(3)∠BDG=60°,
延长AB、FG交于H,连接HD.
∵AD∥GF,AB∥DF,
∴四边形AHFD为平行四边形,
∵∠ABC=120°,AF平分∠BAD,
∴∠DAF=30°,∠ADC=120°,∠DFA=30°,
∴△DAF为等腰三角形,
∴AD=DF,
∴平行四边形AHFD为菱形,
∴△ADH,△DHF为全等的等边三角形,
∴DH=DF,∠BHD=∠GFD=60°,
∵FG=CE,CE=CF,CF=BH,
∴BH=GF,
在△BHD与△GFD中,
∵,
∴△BHD≌△GFD(SAS),
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
16、(1)见解析;(2)AE=2.
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,
∴△AEG≌△CFH,
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)如图,连接EF,AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF=AE,
设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴12+(8-x)2=x2,
解得x=2,
∴AE=2.
此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
17、(1)见解析;(2)①当AE=4cm时,四边形CEDF是矩形.理由见解析;②当AE=2时,四边形CEDF是菱形,理由见解析.
【解析】
(1)先证△GED≌△GFC,推出DE=CF和DE∥CF,再根据平行四边形的判定推出即可;
(2)①作AP⊥BC于P,先证明△ABP≌△CDE,然后求出DE的值即可得出答案;②先证明△CDE是等边三角形,然后求出DE的值即可得出答案.
【详解】
(1)证明:∵四边形ABCD是平行四边形
∴AD∥BF,
∴∠DEF=∠CFE,∠EDC=∠FCD,
∵G是CD的中点,
∴GD=GC,
∴△GED≌△GFC,
∴DE=CF,DE∥CF,
∴四边形CEDF是平行四边形,
(2)①当AE=4cm时,四边形CEDF是矩形.
理由:作AP⊥BC于P,
∵四边形CEDF是矩形,
∴∠CED=∠APB=90°,
∴AP=CE,
又∵ABCD是平行四边形,
∴AB=CD=4cm,
则△ABP≌△CDE(HL),
∴BP=DE,
∵AB=4cm,∠B=60°,
∴BP=AB×cs60°=4×=2(cm),
∴BP=DE=2cm,
又∵BC=AD=6cm,
∴AE=AD-DE=6-2=4(cm);.
②当AE=2时,四边形CEDF是菱形.
理由:∵平行四边形CEDF是菱形,
∴DE=CE,
又∵∠CDE=∠B=60°,
∴△CDE是等边三角形,
∵四边形ABCD是平行四边形,
∴AB=CD=4cm,DE=CD=4cm,
∵BC=AD=6cm,
则AE=AD-DE=6-4=2(cm).
本题考查了平行四边形的判定和性质,等边三角形的判定和性质,全等三角形的判定和性质以及三角函数应用,注意:有一组对边平行且相等的四边形是平行四边形.
18、19
【解析】
根据平行四边形的性质可知对角线相互平分,,推出 即可推出周长.
【详解】
∵四边形ABCD是平行四边形,
∴,OC=AC=,OD=,
∴的周长.
本题主要考查了平行四边的性质,熟知平行四边形的对角线相互平分是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用待定系数法求后8分钟的解析式,再求函数值.
【详解】
解:根据题意知:后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系,设y=kx+b
当x=4,y=20
当x=12,y=30
∴
∴
∴后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系y=1.1x+15
当x=8时,y=1.
故答案为:1.
本题考查利用待定系数法求一次函数解析式,并根据自变量取值,再求函数值.求出解析式是解题关键.
20、
【解析】
首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.
解:如图所示,过E作EM⊥AC,
已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),
故选B.
“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.
21、-1
【解析】
将x=-1,代入y=2x+1中进行计算即可;
【详解】
将x=-1代入y=2x+1,得y=-1;
此题考查求函数值,解题的关键是将x的值代入进行计算;
22、
【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
【详解】
解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC===8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=AC=4,
∴OD===2 .
∴BD=4.
故答案为:4.
本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
23、A
【解析】
【分析】结合统计表数据,根据众数和中位数的定义可以求出结果.
【详解】从统计表中看出,6出现次数最多,故众数是6;第10和11户用电量的平均数是中位数.即:
故选:A
【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)-2
【解析】
(1)根据代入求出x的解,得到a的不等式即可求解;
(2)联立两函数求出交点坐标,代入即可求解;
(3)根据分式的运算法则得到
得到A,B的方程,即可求解.
【详解】
(1)∵
∴
由题意可知,即,解得.
(2)由题意可知为方程组的解,解方程组得.
所以,,
将代入上式得:.
(3)∵
∴,解得.所以的值为.
此题主要考查一次函数的应用,解题的关键是熟知一次函数的性质、二元一次方程组的解法.
25、
【解析】
首先利用,代入进行化简,在代入参数计算.
【详解】
解:原式 = = =
本题主要考查分式的化简计算,注意这是二元一次方程的解,利用根与系数的关系也可以计算.
26、(1)BD⊥CE;(2)成立,理由见解析;(3)HD⊥BC,证明见解析;
【解析】
(1)根据等腰直角三角形的性质解答;(2)延长延长BD、CE,交于点M,证明△ABD≌△ACE,根据全等三角形的性质、垂直的定义解答;(3)过点D作DN⊥AB于点N,根据题意判定△NDH是等腰直角三角形,从而使问题得解.
【详解】
解:(1)∵△ABC和△ADE都是等腰直角三角形且点D、E分别在线段AB、AC上,
∴BD⊥CE;
(2)成立
证明:延长BD、CE,交于点M
∵∠BAC=∠DAE=90°
∴∠BAC-∠DAC =∠DAE-∠DAC
即∠BAD=∠CAE
又∵AB=AC,AD=AE
∴△ABD≌△ACE(SAS)
∴∠ABD=∠ACE
在等腰直角△ABC中,∠ABD +∠DBC+∠ACB=90°
∴∠ACE +∠DBC+∠ACB=90°
∴在△MBC中,∠M=180°-(∠ACE +∠DBC+∠ACB)= 90°
∴BD⊥CE
(3)HD⊥BC
证明:过点D作DN⊥AB于点N.
∵AB=AC,BF=CF,
∴AF⊥BC
又∵AD平分∠BAF,且DN⊥AB
∴DN=DF
在Rt△BND中,∠B=45°
∴∠NDB=45°,NB=ND
∴NB=DF
∵BH=2DF
∴BH=2NB
而BH=NB+NH
∴NB=NH=ND
∴△NDH是等腰直角三角形,∠NDH=45°
∴∠HDB=∠NDH +∠NDB= 45°+ 45°=90°
∴HD⊥BC
本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】: 这是一份2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】: 这是一份2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】: 这是一份2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。