|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】01
    2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】02
    2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】

    展开
    这是一份2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)不等式8﹣4x≥0的解集在数轴上表示为( )
    A.
    B.
    C.
    D.
    2、(4分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )
    A.0个B.1个C.2个D.3个
    3、(4分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
    A.30°B.36°C.54°D.72°
    4、(4分)直线与轴的交点坐标是( )
    A.B.C.D.
    5、(4分)关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,则k的取值范围( )
    A.B.且k≠0C.D.且k≠0
    6、(4分)分式方程=有增根,则增根为( )
    A.0B.1C.1或0D.﹣5
    7、(4分)如图,矩形中,分别是线段的中点,,动点沿的路线由点运动到点,则的面积是动点运动的路径总长的函数,这个函数的大致图象可能是( )
    A.B.C.D.
    8、(4分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在矩形中,,相交于点,平分交于点,若,则________.
    10、(4分)正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)
    11、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.
    12、(4分)如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;
    13、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算
    (1)5﹣9+
    (2)(2+)2﹣2.
    15、(8分)在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.
    (1)如图1,证明平行四边形ECFG为菱形;
    (2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;
    (3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.
    16、(8分)如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.
    (1)求证:四边形EGFH是平行四边形;
    (2)若EG=EH,AB=8,BC=1.求AE的长.
    17、(10分)如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
    (1)求证:四边形CEDF是平行四边形;
    (2)①AE为何值时四边形CEDF是矩形?为什么?
    ②AE为何值时四边形CEDF是菱形?为什么?
    18、(10分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一个有进水管与出水管的容器,从某时刻开始内只进水不出水,在随后的内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量单位:)与时间(单位)之间的关系如图所示:则时容器内的水量为__________.
    20、(4分)如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.
    21、(4分)已知,当=-1时,函数值为_____;
    22、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
    23、(4分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:
    这20户家庭日用电量的众数、中位数分别是( )
    A.6,6.5B.6,7C.6,7.5D.7,7.5
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知一次函数,.
    (1)若方程的解是正数,求的取值范围;
    (2)若以、为坐标的点在已知的两个一次函数图象上,求的值;
    (3)若,求的值.
    25、(10分)已知,,若,试求的值.
    26、(12分)已知△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°.
    (1)如图①,点D、E分别在线段AB、AC上. 请直接写出线段BD和CE的位置关系: ;
    (2)将图①中的△ADE绕点A逆时针旋转到如图②的位置时,(1)中的结论是否成立?若成立,请利用图②证明;若不成立,请说明理由;
    (3)如图③,取BC的中点F,连接AF,当点D落在线段BC上时,发现AD恰好平分∠BAF,此时在线段AB上取一点H,使BH=2DF,连接HD,猜想线段HD与BC的位置关系并证明.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    先根据不等式的基本性质求出此不等式的解集,在数轴上表示出来,再找出符合条件的选项即可.
    【详解】
    8﹣4x≥0
    移项得,﹣4x≥﹣8,
    系数化为1得,x≤1.
    在数轴上表示为:
    故选:C.
    本题考查的是解一元一次不等式及在数轴上表示不等式的解集,解答此类题目时要注意实心圆点与空心圆点的区别.正确求出不等式的解集是解此题的关键.
    2、D
    【解析】
    依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠BAC=∠DAC=45°.
    在△APE和△AME中,
    ∠BAC=∠DAC
    AE=AE
    ∠AEP=∠AEM,
    ∴△APE≌△AME(ASA),
    故①正确;
    ∴PE=EM=PM,
    同理,FP=FN=NP.
    ∵正方形ABCD中,AC⊥BD,
    又∵PE⊥AC,PF⊥BD,
    ∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
    ∴四边形PEOF是矩形.
    ∴PF=OE,
    ∴PE+PF=OA,
    又∵PE=EM=PM,FP=FN=NP,OA=AC,
    ∴PM+PN=AC,∴PM+PN=BD;
    故②正确;
    ∵四边形ABCD是矩形,
    ∴AC⊥BD,
    ∴∠AOB=90°,
    ∵PE⊥AC,PF⊥BD,
    ∴∠OEP=∠EOF=∠OFP=90°,
    ∴四边形PEOF是矩形,
    ∴OE=PF,OF=PE,
    在直角△OPF中,OE²+PE²=PO²,
    ∴PE²+PF²=PO²,
    故③正确;
    ∴正确的有3个,
    故选:D
    本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.
    3、B
    【解析】
    在等腰三角形△ABE中,求出∠A的度数即可解决问题.
    【详解】
    解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
    又知△ABE是等腰三角形,
    ∴AB=AE,
    ∴∠ABE=(180°-108°)=36°.
    故选B.
    本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
    4、A
    【解析】
    根据直线与x轴的交点,y=0时,求得的x的值,就是直线与x轴相交的横坐标,计算求解即可.
    【详解】
    解:当y=0时,可得
    计算
    所以直线与x轴的交点为:
    故选A.
    本题主要考查直线与坐标轴的相交问题,这是一次函数的常考点,与x轴相交,y=0,与y轴相交,则x=0.
    5、B
    【解析】
    根据一元二次方程的定义和根的判别式得出k≠0且△=(-3)2-4k×1>0,求出即可.
    【详解】
    ∵关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,
    ∴k≠0且△=(-3)2-4k×1>0,
    解得:k<且k≠0,
    故选B.
    本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.
    6、B
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的增根.
    【详解】
    =,
    去分母得:6x=x+5,
    解得:x=1,
    经检验x=1是增根.
    故选B.
    此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    7、C
    【解析】
    根据题意分析△PAB的面积的变化趋势即可.
    【详解】
    根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为1.
    故选C.
    本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.
    8、C
    【解析】
    由折叠的性质可得DE=BE,
    设AE=xcm ,则BE=DE=(9-x)cm,
    在Rt中,由勾股定理得:32+ x2=(9-x)2
    解得:x=4,
    ∴AE=4cm,
    ∴S△ABE=×4×3=6(cm2),
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    判断出△ABE是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB=30°,再判断出△ABO是等边三角形,根据等边三角形的性质求出OB=AB,再求出OB=BE,然后根据等腰三角形两底角相等求出∠BOE=75°,再根据∠AOE=∠AOB+∠BOE计算即可得解.
    【详解】
    解:∵AE平分∠BAD,
    ∴∠BAE=∠DAE=45°,
    ∴∠AEB=45°,
    ∴△ABE是等腰直角三角形,
    ∴AB=BE,
    ∵∠CAE=15°,
    ∴∠ACE=∠AEB-∠CAE=45°-15°=30°,
    ∴∠BAO=90°-30°=60°,
    ∵矩形中OA=OB,
    ∴△ABO是等边三角形,
    ∴OB=AB,∠ABO=∠AOB=60°,
    ∴OB=BE,
    ∵∠OBE=∠ABC-∠ABO=90°-60°=30°,
    ∴∠BOE=(180°-30°)=75°,
    ∴∠AOE=∠AOB+∠BOE,
    =60°+75°,
    =135°.
    故答案为135°.
    本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
    10、
    【解析】
    分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].
    详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),
    ∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,
    又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,
    ∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).
    故答案为(2n-1,2n-1).
    点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.
    11、1
    【解析】
    根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.
    【详解】
    根据折叠的性质知:BP=BC,
    ∴BN=BC=BP,
    ∵∠BNP=90°,
    ∴∠BPN=1°,
    故答案为:1.
    本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.
    12、60
    【解析】
    先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.
    【详解】
    解:∵∠BAC=120°,AB=AC,
    ∴∠C= ==30°,
    ∵AC的垂直平分线交BC于D,
    ∴AD=CD,
    ∴∠C=∠CAD=30°,
    ∵∠ADB是△ACD的外角,
    ∴∠ADB=∠C+∠CAD=30°+30°=60°.
    故答案为60°.
    本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.
    13、2
    【解析】
    解:这组数据的平均数为2,
    有 (2+2+0-2+x+2)=2,
    可求得x=2.
    将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
    其平均数即中位数是(2+2)÷2=2.
    故答案是:2.
    三、解答题(本大题共5个小题,共48分)
    14、(1)9(2)9+2.
    【解析】
    分析:(1)、根据二次根式的化简法则将各式进行化简,然后进行求和得出答案;(2)、根据完全平方公式将括号去掉,然后进行计算得出答案.
    详解:(1)原式=10﹣3+2=9;
    (2)原式=9+4﹣2=9+2.
    点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确二次根式的化简法则是解决这个问题的关键.
    15、(1)证明见解析;
    (2)∠BDM的度数为45°;
    (3)∠BDG的度数为60°.
    【解析】
    (1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;
    (2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;
    (3)延长AB、FG交于H,连接HD,求证平行四边形AHFD为菱形,得出△ADH,△DHF为全等的等边三角形,证明△BHD≌△GFD,即可得出答案.
    【详解】
    (1)∵AF平分∠BAD,
    ∴∠BAF=∠DAF,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AB∥CD,
    ∴∠DAF=∠CEF,∠BAF=∠CFE,
    ∴∠CEF=∠CFE,
    ∴CE=CF,
    又∵四边形ECFG是平行四边形,
    ∴四边形ECFG为菱形.
    (2)如图,连接BM,MC,
    ∵∠ABC=90°,四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形,
    又由(1)可知四边形ECFG为菱形,
    ∠ECF=90°,
    ∴四边形ECFG为正方形.
    ∵∠BAF=∠DAF,
    ∴BE=AB=DC,
    ∵M为EF中点,
    ∴∠CEM=∠ECM=45°,
    ∴∠BEM=∠DCM=135°,
    在△BME和△DMC中,

    ∴△BME≌△DMC(SAS),
    ∴MB=MD,
    ∠DMC=∠BME.
    ∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
    ∴△BMD是等腰直角三角形,
    ∴∠BDM=45°;
    (3)∠BDG=60°,
    延长AB、FG交于H,连接HD.
    ∵AD∥GF,AB∥DF,
    ∴四边形AHFD为平行四边形,
    ∵∠ABC=120°,AF平分∠BAD,
    ∴∠DAF=30°,∠ADC=120°,∠DFA=30°,
    ∴△DAF为等腰三角形,
    ∴AD=DF,
    ∴平行四边形AHFD为菱形,
    ∴△ADH,△DHF为全等的等边三角形,
    ∴DH=DF,∠BHD=∠GFD=60°,
    ∵FG=CE,CE=CF,CF=BH,
    ∴BH=GF,
    在△BHD与△GFD中,
    ∵,
    ∴△BHD≌△GFD(SAS),
    ∴∠BDH=∠GDF
    ∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
    此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
    16、(1)见解析;(2)AE=2.
    【解析】
    (1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
    (2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
    【详解】
    (1)∵矩形ABCD中,AB∥CD,
    ∴∠FCH=∠EAG,
    又∵CD=AB,BE=DF,
    ∴CF=AE,
    又∵CH=AG,
    ∴△AEG≌△CFH,
    ∴GE=FH,∠CHF=∠AGE,
    ∴∠FHG=∠EGH,
    ∴FH∥GE,
    ∴四边形EGFH是平行四边形;
    (2)如图,连接EF,AF,
    ∵EG=EH,四边形EGFH是平行四边形,
    ∴四边形GFHE为菱形,
    ∴EF垂直平分GH,
    又∵AG=CH,
    ∴EF垂直平分AC,
    ∴AF=CF=AE,
    设AE=x,则FC=AF=x,DF=8-x,
    在Rt△ADF中,AD2+DF2=AF2,
    ∴12+(8-x)2=x2,
    解得x=2,
    ∴AE=2.
    此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
    17、(1)见解析;(2)①当AE=4cm时,四边形CEDF是矩形.理由见解析;②当AE=2时,四边形CEDF是菱形,理由见解析.
    【解析】
    (1)先证△GED≌△GFC,推出DE=CF和DE∥CF,再根据平行四边形的判定推出即可;
    (2)①作AP⊥BC于P,先证明△ABP≌△CDE,然后求出DE的值即可得出答案;②先证明△CDE是等边三角形,然后求出DE的值即可得出答案.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形
    ∴AD∥BF,
    ∴∠DEF=∠CFE,∠EDC=∠FCD,
    ∵G是CD的中点,
    ∴GD=GC,
    ∴△GED≌△GFC,
    ∴DE=CF,DE∥CF,
    ∴四边形CEDF是平行四边形,
    (2)①当AE=4cm时,四边形CEDF是矩形.
    理由:作AP⊥BC于P,
    ∵四边形CEDF是矩形,
    ∴∠CED=∠APB=90°,
    ∴AP=CE,
    又∵ABCD是平行四边形,
    ∴AB=CD=4cm,
    则△ABP≌△CDE(HL),
    ∴BP=DE,
    ∵AB=4cm,∠B=60°,
    ∴BP=AB×cs60°=4×=2(cm),
    ∴BP=DE=2cm,
    又∵BC=AD=6cm,
    ∴AE=AD-DE=6-2=4(cm);.
    ②当AE=2时,四边形CEDF是菱形.
    理由:∵平行四边形CEDF是菱形,
    ∴DE=CE,
    又∵∠CDE=∠B=60°,
    ∴△CDE是等边三角形,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD=4cm,DE=CD=4cm,
    ∵BC=AD=6cm,
    则AE=AD-DE=6-4=2(cm).
    本题考查了平行四边形的判定和性质,等边三角形的判定和性质,全等三角形的判定和性质以及三角函数应用,注意:有一组对边平行且相等的四边形是平行四边形.
    18、19
    【解析】
    根据平行四边形的性质可知对角线相互平分,,推出 即可推出周长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴,OC=AC=,OD=,
    ∴的周长.
    本题主要考查了平行四边的性质,熟知平行四边形的对角线相互平分是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    利用待定系数法求后8分钟的解析式,再求函数值.
    【详解】
    解:根据题意知:后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系,设y=kx+b
    当x=4,y=20
    当x=12,y=30


    ∴后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系y=1.1x+15
    当x=8时,y=1.
    故答案为:1.
    本题考查利用待定系数法求一次函数解析式,并根据自变量取值,再求函数值.求出解析式是解题关键.
    20、
    【解析】
    首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.
    解:如图所示,过E作EM⊥AC,
    已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),
    故选B.
    “点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.
    21、-1
    【解析】
    将x=-1,代入y=2x+1中进行计算即可;
    【详解】
    将x=-1代入y=2x+1,得y=-1;
    此题考查求函数值,解题的关键是将x的值代入进行计算;
    22、
    【解析】
    利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
    【详解】
    解:∵AC⊥BC,AB=CD=10,AD=6,
    ∴AC===8,
    ∵▱ABCD的对角线AC与BD相交于点O,
    ∴BO=DO,AO=CO=AC=4,
    ∴OD===2 .
    ∴BD=4.
    故答案为:4.
    本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
    23、A
    【解析】
    【分析】结合统计表数据,根据众数和中位数的定义可以求出结果.
    【详解】从统计表中看出,6出现次数最多,故众数是6;第10和11户用电量的平均数是中位数.即:
    故选:A
    【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3)-2
    【解析】
    (1)根据代入求出x的解,得到a的不等式即可求解;
    (2)联立两函数求出交点坐标,代入即可求解;
    (3)根据分式的运算法则得到
    得到A,B的方程,即可求解.
    【详解】
    (1)∵

    由题意可知,即,解得.
    (2)由题意可知为方程组的解,解方程组得.
    所以,,
    将代入上式得:.
    (3)∵
    ∴,解得.所以的值为.
    此题主要考查一次函数的应用,解题的关键是熟知一次函数的性质、二元一次方程组的解法.
    25、
    【解析】
    首先利用,代入进行化简,在代入参数计算.
    【详解】
    解:原式 = = =
    本题主要考查分式的化简计算,注意这是二元一次方程的解,利用根与系数的关系也可以计算.
    26、(1)BD⊥CE;(2)成立,理由见解析;(3)HD⊥BC,证明见解析;
    【解析】
    (1)根据等腰直角三角形的性质解答;(2)延长延长BD、CE,交于点M,证明△ABD≌△ACE,根据全等三角形的性质、垂直的定义解答;(3)过点D作DN⊥AB于点N,根据题意判定△NDH是等腰直角三角形,从而使问题得解.
    【详解】
    解:(1)∵△ABC和△ADE都是等腰直角三角形且点D、E分别在线段AB、AC上,
    ∴BD⊥CE;
    (2)成立
    证明:延长BD、CE,交于点M
    ∵∠BAC=∠DAE=90°
    ∴∠BAC-∠DAC =∠DAE-∠DAC
    即∠BAD=∠CAE
    又∵AB=AC,AD=AE
    ∴△ABD≌△ACE(SAS)
    ∴∠ABD=∠ACE
    在等腰直角△ABC中,∠ABD +∠DBC+∠ACB=90°
    ∴∠ACE +∠DBC+∠ACB=90°
    ∴在△MBC中,∠M=180°-(∠ACE +∠DBC+∠ACB)= 90°
    ∴BD⊥CE
    (3)HD⊥BC
    证明:过点D作DN⊥AB于点N.
    ∵AB=AC,BF=CF,
    ∴AF⊥BC
    又∵AD平分∠BAF,且DN⊥AB
    ∴DN=DF
    在Rt△BND中,∠B=45°
    ∴∠NDB=45°,NB=ND
    ∴NB=DF
    ∵BH=2DF
    ∴BH=2NB
    而BH=NB+NH
    ∴NB=NH=ND
    ∴△NDH是等腰直角三角形,∠NDH=45°
    ∴∠HDB=∠NDH +∠NDB= 45°+ 45°=90°
    ∴HD⊥BC
    本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.
    题号





    总分
    得分
    相关试卷

    2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】: 这是一份2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】: 这是一份2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】: 这是一份2024-2025学年陕西省安康市汉滨数学九上开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map