2024-2025学年广西玉林博白县九上数学开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在一组数据3,4,4,6,8中,下列说法错误的是( )
A.它的众数是4B.它的平均数是5
C.它的中位数是5D.它的众数等于中位数
2、(4分) “分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,这体现的数学思想方法是 ( )
A.分类B.类比C.方程D.数形结合
3、(4分)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是( )
A.4B.5C.6D.7
4、(4分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )
A.5元 B.10元 C.20元 D.10元或20元
5、(4分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
A.70°B.60°C.50°D.80°
6、(4分)下列图形中,是轴对称图形,但不是中心对称图形的是( )
A.B.C.D.
7、(4分)如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于( )
A.9B.35C.45D.无法计算
8、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4, 5, 6B.5, 12, 13C.2, 3, 4D.1, ,3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)使代数式有意义的x的取值范围是_____.
10、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
11、(4分)如图,中, D是AB的中点,则CD=__________.
12、(4分)一次函数的图象如图所示,不等式的解集为__________.
13、(4分)一元二次方程x2﹣x=0的根是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算
(1)计算:
(2)分解因式:
15、(8分)问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图①,连接边长为2的正三角形三条边的中点,从上往下看:
边长为1的正三角形,第一层有1个,第二层有3个,共有个;
边长为2的正三角形一共有1个.
探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
16、(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题
(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;
(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.
17、(10分)如图,矩形的两条边、分别在轴和轴上,已知点 坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.
(1)线段 ;
(2)求点坐标及折痕的长;
(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
18、(10分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)求证:四边形ACFD为平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知:AB=2m,CD=28cm,则AB:CD=_____.
20、(4分)计算:(﹣)2=_____.
21、(4分)已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.
22、(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是______.
23、(4分)若a,b都是实数,b=+﹣2,则ab的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.
(1)求点A、B、D的坐标;
(2)求直线BD的表达式.
25、(10分)(1)计算:
(2)解方程:.
26、(12分)先化简再求值:,再从0,﹣1,2中选一个数作为a的值代入求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
一组数据中出现次数最多的数为众数;
将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.
根据平均数的定义求解.
【详解】
在这一组数据中4是出现次数最多的,故众数是4;
将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;
由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,
故选C.
本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
2、B
【解析】
根据分式和分数的基本性质,成立的条件等相关知识,分析求解.
【详解】
“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,比如分数的基本性质,分数成立的条件等,这体现的数学思想方法是类比
故选:B
本题的解题关键是掌握分数和分式的基本性质和概念.
3、C
【解析】
解:设外角为x,则相邻的内角为2x,
由题意得,2x+x=180°,
解得,x=60°,
360÷60°=6,
故选C.
4、C
【解析】
设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
【详解】
设每件衬衫应降价x元,则每天可销售(1+2x)件,
根据题意得:(40-x)(1+2x)=110,
解得:x1=10,x2=1.
∵扩大销售,减少库存,
∴x=1.
故选C.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
5、A
【解析】
根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,则∠C=∠DAC,再利用三角形的内角和求出∠BAC,故可求出∠BAD.
【详解】
根据题意尺规作图得到NM是AC的垂直平分线,
故AD=CD,
∴∠DAC=∠C=30°,
∵∠B=50°,∠C=30°
∴∠BAC=180°-50°-30°=100°,
∴∠BAD=∠BAC-∠DAC=70°.
故选A.
此题主要考查垂直平分线的性质,解题的关键是熟知三角形的内角和与垂直平分线的性质.
6、B
【解析】
根据轴对称图形和中心对称图形的概念即可逐一判断.
【详解】
解:A、是轴对称图形,也是中兴对称图形,故A不符合题意;
B、是轴对称图形,但不是中兴对称图形,故B符合题意;
C、是轴对称图形,也是中兴对称图形,故C不符合题意;
D、是轴对称图形,也是中兴对称图形,故D不符合题意;
故选:B.
本题考查了轴对称图形和中心对称图形的识别,解题的关键是熟知轴对称图形和中兴对称图形的概念.
7、C
【解析】
【分析】由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化简可求得结果.
【详解】在Rt△ABD和Rt△ADC中,
BD2=AB2-AD2,CD2=AC2-AD2,
在Rt△BDM和Rt△CDM中,
BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,
∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)
=AC2-AB2
=1.
故选C
【点睛】本题考核知识点:勾股定理.解题关键点:灵活运用勾股定理.
8、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.
【详解】
解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;
C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.
故选:B.
本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥0且x≠2
【解析】
根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得2x-1≠0,再解不等式即可.
【详解】
由题意得:x⩾0且2x−1≠0,
解得x⩾0且x≠,
故答案为x⩾0且x≠.
本题考查了二次根式有意义的条件,分式有意义的条件.牢记分式、二次根式成立的条件是解题的关键.
10、(答案不唯一)
【解析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
【详解】
解:∵∠ A=∠ A, AB=AC,
∴若按照SAS可添加条件AD=AE;
若按照AAS可添加条件∠ ADB=∠AEC;
若按照ASA可添加条件∠B=∠C;
故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
11、6.1
【解析】
首先根据勾股定理求得AB=13,然后由“斜边上的中线等于斜边的一半”来求CD的长度.
【详解】
∵Rt△ABC中,,
∴AB===13,
∵D为AB的中点,
∴CD=AB=6.1.
故答案为:6.1.
本题考查了勾股定理和直角三角形斜边上的中线.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
12、
【解析】
首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.
【详解】
解:根据图象可得:
解得:
所以可得一次函数的直线方程为:
所以可得 ,解得:
故答案为
本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.
13、x1=0,x2=1
【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
【详解】
方程变形得:x(x﹣1)=0,
可得x=0或x﹣1=0,
解得:x1=0,x2=1.
故答案为x1=0,x2=1.
此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) ;(2).
【解析】
(1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;
(2)原式提取公因式,再利用完全平方公式分解即可.
【详解】
(1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;
(2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.
本题考查的知识点是整式的混合运算, 提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算, 提公因式法与公式法的综合运用.
15、探究三:16,6;结论:n², ;应用:625,300.
【解析】
探究三:模仿探究一、二即可解决问题;
结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有 个;
应用:根据结论即可解决问题.
【详解】
解:探究三:
如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;
边长为2的正三角形有个.
结论:
连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;
边长为2的正三角形,共有个.
应用:
边长为1的正三角形有=625(个),
边长为2的正三角形有 (个).
故答案为探究三:16,6;结论:n², ;应用:625,300.
本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.
16、(1)见解析,(﹣3,﹣1);(1)见解析,(﹣3,﹣1)
【解析】
(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;
(1)根据关于原点对称的点的坐标特征写点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1.
【详解】
解:(1)如图,△A1B1C1为所作,点C1的坐标为(﹣1,1);
(1)如图,△A1B1C1为所作,点C1的坐标为(﹣3,﹣1).
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
17、(1);(2);拆痕DE的长为; (3)点Q坐标为
【解析】
(1)根据B点的坐标即可求得AC的长度.
(2)首先根据已知条件证明,再根据相似比例计算DF、CD的长度
即可计算出D点的坐标,再证明,根据EF=DF,即可计算的DE的长度.
(3)根据等腰三角形的性质,分类讨论第一种情况当时;第二种情况当时;第三种情况当时,分别计算即可.
【详解】
解:(1)
(2),由折叠可得:
,.
∵四边形OABC是矩形,
∴拆痕DE的长为
(3)由(2)可知,,
若以P、D、E、Q为顶点的四边形是菱形,则必为等腰三角形。
当时,可知,
此时PE为对角线,可得
当时,可知,此时DP为对角线,可得;
当时,P与C重合,Q与A重合,
综上所述,满足条件的点Q坐标为
本题主要考查菱形的基本性质,难点在于第三问中的等腰三角形的分类讨论,根据等腰三角形的腰进行分类,再根据腰相等进行计算.
18、(1)证明见解析;(2)证明见解析.
【解析】
试题分析: (1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.
试题解析:
(1)证明:∵AB∥DE,
∴∠B=∠DEF,
∵BE=EC=CF,
∴BC=EF,
在△ABC和△DEF中
∴△ABC≌△DEF.
(2)证明:∵△ABC≌△DEF,
∴AC=DF,
∵∠ACB=∠F,
∴AC∥DF,
∴四边形ACFD是平行四边形,
∴AD∥CF,AD=CF,
∵EC=CF,
∴AD∥EC,AD=CE,
∴四边形AECD是平行四边形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、50:7
【解析】
先将2m转换为200cm,再代入计算即可.
【详解】
∵AB=2m=200cm,CD=28cm,
∴AB:CD=200:28=50:7.
故答案为50:7.
本题考查比例线段,学生们掌握此定理即可.
20、.
【解析】
根据乘方的定义计算即可.
【详解】
(﹣)2=.
故答案为:.
本题考查了乘方的意义,一般地,n个相同的因数a相乘,即a·a·a·…·a计作an,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数.
21、﹣1
【解析】
因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.
【详解】
解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
则得到|m|=1,m=±1,
∵m﹣1≠0,
∴m≠1,m=﹣1.
故答案是:m=﹣1.
考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
22、5
【解析】
由平均数可求解a的值,再根据中位数的定义即可求解.
【详解】
解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,
故答案为:5.
本题考查了平均数和中位数的概念.
23、1
【解析】
直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.
【详解】
解:∵b=+﹣2,
∴
∴1-2a=0,
解得:a=,则b=-2,
故ab=()-2=1.
故答案为1.
此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a的值是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A(﹣2,0),点B(0,1),D(2,﹣2);(2)y=﹣3x+1.
【解析】
(1)由于ー次函数y=2x+1的图象与x、y轴分别相交于点A、B,所以利用函数解析式即可求出AB两点的坐标,然后过D作DH⊥x轴于H点,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AHD=90°,AB=AD,接着证明△ABO≌△DAH,最后利用全等三角形的性质可以得到DH=AO=2,AH=BO=1,从而求出点D的坐标;
(2)利用待定系数法即可求解
【详解】
解:(1)∵当y=0时,2x+1=0,x=﹣2.
∴点A(﹣2,0).
∵当x=0时,y=1.
∴点B(0,1).
过D作DH⊥x轴于H点,
∵四边形ABCD是正方形,
∴∠BAD=∠AOB=∠AHD=90°,AB=AD.
∴∠BAO+∠ABO=∠BAO+∠DAH,
∴∠ABO=∠DAH.
∴△ABO≌△DAH.
∴DH=AO=2,AH=BO=1,
∴OH=AH﹣AO=2.
∴点D(2,﹣2).
(2)设直线BD的表达式为y=kx+b.
∴
解得 ,
∴直线BD的表达式为y=﹣3x+1.
此题考查一次函数综合题,利用全等三角形的性质是解题关键
25、(1);(2)x1=0,x2=﹣1.
【解析】
(1)先算乘法,根据二次根式化简,再合并同类二次根式即可;
(2)分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
(1)原式==;
(2)x2+1x=0,
x(x+1)=0,
x=0,x+1=0,
x1=0,x2=﹣1.
本题考查二次根式的混合运算和解一元二次方程,能正确运用运算法则进行化简是解(1)的关键,能把一元二次方程转化成一元一次方程是解(2)的关键.
26、.
【解析】
首先将分式进行化简,特别注意代入计算的数,不能使分式的分母为0.
【详解】
解:原式=
=
= ,
∵a≠0,a2﹣1≠0,a2+a≠0,
即a≠0,且a≠±1,
∴取a=2,
原式=.
本题主要考查分式化简求值,注意分式的分母不能为0
题号
一
二
三
四
五
总分
得分
2024-2025学年贵州省六盘水市九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年贵州省六盘水市九上数学开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省肇庆市怀集县九上数学开学学业水平测试试题【含答案】: 这是一份2024-2025学年广东省肇庆市怀集县九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省江门市恩平市九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年广东省江门市恩平市九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。