2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为( )
A.﹣3B.﹣1C.1D.3
2、(4分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是( )
A.小明吃早餐用了25min
B.小明从图书馆回家的速度为0.8km/min
C.食堂到图书馆的距离为0.8km
D.小明读报用了30min
3、(4分)数据2,3,5,5,4的众数是( ).
A.2B.3C.4D.5
4、(4分)下列说法不能判断是正方形的是( )
A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的矩形
C.对角线相等的菱形D.对角线互相垂直平分的四边形
5、(4分)一个直角三角形的两边长分别为2和,则第三边的长为( )
A.1B.2C.D.3
6、(4分)如图,图中的小正方形的边长为1,到点A的距离为的格点的个数是( )
A.7B.6C.5D.4
7、(4分)若x取整数,则使分式的值为整数的x值有( )
A.3个B.4个C.6个D.8个
8、(4分)下列各式中,最简二次根式为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知平行四边形ABCD中,∠A﹣∠B=50°,则∠C=_____.
10、(4分)计算:______________
11、(4分)一次函数y=2x-4的图像与x轴的交点坐标为_______.
12、(4分)如图,在反比例函数的图象上有四个点,,,,它们的横坐标依次为,,,,分别过这些点作轴与轴的垂线,则图中阴影部分的面积之和为______.
13、(4分)如图,某居民小区要一块一边靠墙的空地上建一个长方形花园,花园的中间用平行于的栅栏隔开,一边靠墙,其余部分用总长为米的栅栏围成且面积刚好等于平方米,求围成花园的宽为多少米?设米,由题意可列方程为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知直线y=x+2交x轴于点A,交y轴于点B,
(1)求A,B两点的坐标;
(2)已知点C是线段AB上的一点,当S△AOC= S△AOB时,求直线OC的解析式。
15、(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.
(1)求笔试成绩和面试成绩各占的百分比:
(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。
16、(8分)某校为了开展“书香墨香进校园”活动,购买了一批毛笔和墨水.已知毛笔的单位比墨水的单价多5元,购买毛笔用了450元,墨水用了150元,毛笔数量是墨水数量的2倍.求这批毛笔和墨水的数量分别是多少?
17、(10分)如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).
(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.
18、(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
20、(4分)点M(a,2)是一次函数y=2x-3图像上的一点,则a=________.
21、(4分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.
22、(4分)如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE=5,折痕为 PQ,则 PQ 的长为_________cm.
23、(4分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)
二、解答题(本大题共3个小题,共30分)
24、(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
25、(10分)如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且AE∥CF,求证:AE=CF
26、(12分)A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,试求两车的速度。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.
【详解】
解:设方程另一个根为x1,
∴x1+(﹣1)=2,
解得x1=1.
故选:D.
本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=- ,x1•x2=.
2、D
【解析】
根据函数图象判断即可.
【详解】
小明吃早餐用了(25-8)=17min,A错误;
小明从图书馆回家的速度为0.8÷10=0.08km/min,B错误;
食堂到图书馆的距离为(0.8-0.6)=0.2km,C错误;
小明读报用了(58-28)=30min,D正确;
故选:D
本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.
3、D
【解析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵1是这组数据中出现次数最多的数据,
∴这组数据的众数为1.
故选:D.
本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.
4、D
【解析】
正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.
【详解】
A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;
B中对角线相互垂直的矩形,可得正方形;
C中对角线相等的菱形,可得正方形;
D中,对角线相互垂直平分,仅可推导出菱形,不正确
故选:D
本题考查证正方形的条件,常见思路为:
(1)先证四边形是平行四边形;
(2)再添加一个菱形特有的条件;
(3)再添加一个矩形特有的条件
5、C
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边2既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即2是斜边或直角边.
【详解】
当2和均为直角边时,第三边=;
当2为斜边, 为直角边,则第三边=,
故第三边的长为或
故选C.
此题考查勾股定理,解题关键在于分类讨论第三条边的情况.
6、B
【解析】
根据勾股定理、结合图形解答.
【详解】
解:∵,
∴能够成直角三角形的三边应该是1、2、,
∴到点A的距离为的格点如图所示:
共有6个,
故选:B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么.
7、B
【解析】
首先把分式转化为,则原式的值是整数,即可转化为讨论的整数值有几个的问题.
【详解】
,
当或或或时,是整数,即原式是整数.
当或时,x的值不是整数,当等于或是满足条件.
故使分式的值为整数的x值有4个,是2,0和.
故选B.
本题主要考查了分式的值是整数的条件,把原式化简为的形式是解决本题的关键.
8、B
【解析】
根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.
【详解】
A被开方数中含有能开得尽方的因数54,不是最简二次根式,故错误;
B符合最简二次根式的条件,故正确;
C被开方数中含有分母6,不是最简二次根式,故错误;
D被开方数中含有能开得尽方的因式 ,不是最简二次根式,故错误;
故选:B.
本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、115°.
【解析】
根据平行四边形的邻角互补可得∠A+∠B=180°,和已知∠A﹣∠B=50°,就可建立方程求出∠A的度数,再由平行四边形的性质即可得∠C的度数.
【详解】
在平行四边形ABCD中,∠A+∠B=180°,
又∵∠A﹣∠B=50°,
把这两个式子相加即可求出∠A =115°,
∴∠A=∠C=115°,
故答案为115°.
本题考查了平行四边形的性质:邻角互补,对角相等,熟知性质是解题的关键.
10、3
【解析】
根据负整数指数幂,零指数幂进行计算即可解答
【详解】
原式=2×2-1=3
故答案为:3
此题考查负整数指数幂,零指数幂,掌握运算法则是解题关键
11、 (2,1)
【解析】
把y=1代入y=2x+4求出x的值,即可得出答案.
【详解】
把y=1代入y=2x-4得:1=2x-4,
x=2,
即一次函数y=2x-4与x轴的交点坐标是(2,1).
故答案是:(2,1).
考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是1.
12、2
【解析】
由题意,图中阴影部分的面积之和=×矩形AEOF的面积,根据比例系数k的几何意义即可解决问题;
【详解】
解:如图,∵反比例函数的解析式为,
∴矩形AEOF的面积为1.
由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,
故答案为2.
本题考查反比例函数的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
13、
【解析】
根据题意设AB=x米,则BC=(30-3x)m,利用矩形面积得出答案.
【详解】
解:设AB=x米,由题意可列方程为:x(30-3x)=1.
故答案为:x(30-3x)=1.
此题主要考查了由实际问题抽象出一元二次方程,正确表示出BC的长是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)点A的坐标为(-4,0),点B的坐标为(0,2);(2)y=-x
【解析】
(1)分别令y=0, x=0, 代入一次函数式,即可求出A、B点的坐标;
(2)先由OA和OB的长求出△AOB的面积,设C点坐标为(m,n),△AOC和△AOB等底不同高, 由 S△AOC= S△AOB 列式,求出C点的纵坐标n,把n代入一次函数式求出m, 从而得出C点坐标, 设直线OC的解析式为y=kx ,根据C点坐标用待定系数法求出k, 即可确定直线OC的函数解析式.
【详解】
(1)解:∵直线y= x+2,
∴当x=0时,y=2,当y=0时,x=-4
∵直线y= x+2交x轴于点A,交y轴于点B,
∴点A的坐标为(-4,0),点B的坐标为(0,2)
(2)解:由(1)知,点A的坐标为(-4,0),点B的坐标为(0,2),
∴OA=4,OB=2,
∴S△AOB= =4
S△AOC= S△AOB ,
∴S△AOC=2
设点C的坐标为(m,n)
∴ =2,得n=1,
∵点C在线段AB上,
∴1= m+2,得m=-2
∴点C的坐标为(-2,1)
设直线OC的解析式为y=kx
-2k=1,得k=- ,
即直线OC的函数解析式为y=-x
此题主要考查一次函数的应用,解题的关键是熟知一次函数的图像与性质及三角形的面积公式.
15、(1)笔试占,面试占;(2)第一名:2号,第二名:1号,第三名:3号.
【解析】
(1)设笔试成绩占百分比为,则面试成绩占比为,根据题意列出方程,求解即可;
(2)根据笔试成绩和面试成绩各占的百分比,分别求出其余两名选手的综合成绩,即可得出答案.
【详解】
解:(1)设笔试成绩占百分比为,则面试成绩占比为.
由题意,得
∴笔试成绩占,面试成绩占.
(2)2号选手的综合成绩:
3号选手的综合成绩:
∴三位选手按综合成绩排名为:第一名:2号,第二名:1号,第三名:3号.
本题考查了加权平均数和一元一次方程的应用,熟知加权平均数的计算公式是解题的关键.
16、墨水的单价是10元,则毛笔的单价是15元.
【解析】
设墨水的单价是x元,则毛笔的单价是(x+5)元,根据用450元购进的毛笔的数量是用150元购进的墨水的数量的2倍建立方程求出其解即可.
【详解】
设墨水的单价是x元,则毛笔的单价是(x+5)元,由题意,得
,
解得:x=10,
经检验,x=10是原方程的根
∴x+5=15元,
答:墨水的单价是10元,则毛笔的单价是15元.
本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
17、(1)A′坐标为(4,7),B′坐标为(10,4);(2)点C′的坐标为(3a-2,3b-2 ) .
【解析】
(1)根据题目的叙述,正确地作出图形,然后确定各点的坐标即可;(2)由(1)中坐标分析出x值变化=3x-2,y值变化=3y-2,从而使问题得解.
【详解】
解:(1)依题意知,以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB放大为△TA′B′,故TA′=3TA, B′T=3BT.则延长如图,连结A’B’得△TA′B′.
由图可得A′坐标为(4,7),B′坐标为(10,4);
(2) 易知A、B坐标由A(2,3),B(4,2)变化为A′(4,7),B′(10,4);
则x值变化=3x-2,y值变化=3y-2;
若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标,则变化后点C的对应点C′的坐标为:C′(3a-2,3b-2)
本题难度中等,主要考查了作图-位似变换,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.
18、(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.
【解析】
(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;
(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.
【详解】
试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,
∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;
(2)当∠B=30°时,四边形ACEF是菱形;理由如下:
∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,
又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.
本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.
【详解】
一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
故答案为1.
本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.
20、.
【解析】
解:因为点M(a,2)是一次函数y=2x-3图象上的一点,
∴2=2a-3,
解得a=
故答案为:.
21、 (2,4),(8,4),(7,4),(7.5,4)
【解析】
分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标
【详解】
当PD=DA
如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,
∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),
∴AD=PD=5,PE=P'F=4
∴根据勾股定理得:DE=DF=
∴P(2,4),P'(8,4)
若AD=AP=5,同理可得:P(7,4)
若PD=PA,则P在AD的垂直平分线上,
∴P(7.5,4)
故答案为:(2,4),(8,4),(7,4),(7.5,4)
本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.
22、13
【解析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=
故答案是:13.
本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.
23、抽样调查
【解析】
根据普查和抽样调查的定义,显然此题属于抽样调查.
【详解】
由于只是取了一点品尝,所以应该是抽样调查.
故答案为:抽样调查.
此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.
二、解答题(本大题共3个小题,共30分)
24、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
【解析】
【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
根据题意得,,
解得,
经检验,是原方程的解,
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
甲乙两种商品的销售量为,
设甲种商品按原销售单价销售a件,则
,
解得,
答:甲种商品按原销售单价至少销售20件.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
25、见解析
【解析】
根据一组对边平行且相等的四边形是平行四边形,证明AF=EC,AF∥EC即可.
【详解】
证明:∵四边形ABCD是平行四边形,
且E、F分别是BC、AD上的点,
∴AF=EC,
又∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥EC.
∴四边形AFCE是平行四边形,
∴AE=CF.
本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目现有的条件,选择合理的判断方法.
26、解:设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,
x=16
经检验x=16是方程的解.
16×3=48
巴士的速度是16千米/小时,轿车的速度是48千米/小时.
【解析】设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,根据A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,可列方程求解.
题号
一
二
三
四
五
总分
得分
序号
笔试成绩/分
面试成绩/分
2024-2025学年福建省福州市福建师范大泉州附属中学九上数学开学综合测试模拟试题【含答案】: 这是一份2024-2025学年福建省福州市福建师范大泉州附属中学九上数学开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州市平潭县九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年福建省福州市平潭县九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州市晋安区九上数学开学监测试题【含答案】: 这是一份2024-2025学年福建省福州市晋安区九上数学开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。