2024-2025学年广东省江门市恩平市九上数学开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数与的图象如图所示,则关于的不等式的解集为( )
A.B.C.D.
2、(4分)一名考生步行前往考场,10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )
A.20分钟 B.22分钟 C.24分钟 D.26分钟
3、(4分)下列函数关系式中,y是x的反比例函数的是
A.B.C.D.
4、(4分)如图,方格纸中小正方形的边长为1,,两点在格点上,要在图中格点上找到点,使得的面积为2,满足条件的点有( )
A.无数个B.7个C.6个D.5个
5、(4分)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是( )
A.B.8-2C.D.6
6、(4分)要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为( )
A.中位数 B.方差 C.平均数 D.众数
7、(4分)经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和( )
A.比原多边形多B.比原多边形少C.与原多边形外角和相等D.不确定
8、(4分)下列命题中,错误的是( )
A.平行四边形的对角线互相平分
B.菱形的对角线互相垂直平分
C.矩形的对角线相等且互相垂直平分
D.角平分线上的点到角两边的距离相等
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数中自变量的取值范围是_________________.
10、(4分)某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.
11、(4分)已知整数x、y满足+3=,则的值是______.
12、(4分)数据3,7,6,,1的方差是__________.
13、(4分)矩形的长和宽是关于的方程的两个实数根,则此矩形的对角线之和是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
15、(8分)阅读下列材料:
数学课上,老师出示了这样一个问题:
如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.
某学习小组的同学经过思考,交流了自己的想法:
小明:“通过观察和度量,发现与存在某种数量关系”;
小强:“通过观察和度量,发现图1中线段与相等”;
小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.
老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.
请回答:
(1)求证:;
(2)探究线段、、之间的数量关系,并证明;
(3)若,,求的值(用含的代数式表示).
16、(8分)化简求值: 1(+1)(-1)-(1-1),其中=1.
17、(10分)解下列各题:
(1)分解因式:9a2(x﹣y)+4b2(y﹣x);
(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.
18、(10分)在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简二次根式的结果是______.
20、(4分)若方程的两根为,,则________.
21、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
22、(4分)若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.
23、(4分)已知点M(-1,),N(,-2)关于x轴对称,则=_____
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)当EG=EH时,连接AF
①求证:AF=FC;
②若DC=8,AD=4,求AE的长.
25、(10分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
26、(12分)八年级(1)班张山同学利用所学函数知识,对函数进行了如下研究:
列表如下:
描点并连线(如下图)
(1)自变量x的取值范围是________;
(2)表格中:________,________;
(3)在给出的坐标系中画出函数的图象;
(4)一次函数的图象与函数的图象交点的坐标为_______.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
【详解】
两条直线的交点坐标为(1,2),且当x<1时,直线y2在直线y1的上方,故不等式的解集为x<1.
故选A.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
2、C
【解析】
试题解析:他改乘出租车赶往考场的速度是÷2=,所以到考场的时间是10+÷=16分钟,
∵10分钟走了总路程的,
∴步行的速度=÷10=,
∴步行到达考场的时间是1÷=40,则他到达考场所花的时间比一直步行提前了40-16=24分钟.
故选C.
考点:函数的图象.
3、D
【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.
【详解】
A. 是一次函数,故此选项错误;
B. 是正比例函数,故此选项错误;
C. 不是反比例函数,故此选项错误;
D. 是反比例函数,故此选项正确。
故选D.
本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.
4、C
【解析】
如解图中的C1、D,连接C1D,根据勾股定理即可求出C1D和AB,然后根据三线合一即可求出S△C1AB=2,然后根据平行线之间的距离处处相等即可求出另外两个点C2 、C3,然后同理可找出C4、C5 、C6,从而得出结论.
【详解】
解:设如下图所示中的两个格点为C1、D,连接C1D
根据勾股定理可得C1D=AD=BD=,AB=
∵C1A= C1B,点D为AB的中点
∴C1D⊥AB
∴S△C1AB=AB·C1D=2
∴此时点C1即为所求
过点C1作AB的平行线,交如图所示的格点于C2 、C3,根据平行线之间的距离处处相等,此时C2 、C3也符合题意;
同理可得:S△C4AB=2,
∴点C4即为所求,过点C4作AB的平行线,交如图所示的格点于C5 、C6,根据平行线之间的距离处处相等,此时C4 、C5也符合题意.
满足条件的点C共有6个
故选C.
此题考查的是勾股定理和网格问题,掌握用勾股定理解直角三角形和三线合一的性质是解决此题的关键.
5、C
【解析】
本题设DH=x,利用勾股定理列出方程即可.
【详解】
设DH=x,
在 中,
故选C.
6、B
【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度
详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.
故选B.
点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.
7、C
【解析】
根据外角和的定义即可得出答案.
【详解】
多边形外角和均为360°,故答案选择C.
本题考查的是多边形的外角和,比较简单,记住多边形的外角和均为360°.
8、C
【解析】
试题分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.
解:A、平行四边形的对角线互相平分,所以A选项的说法正确;
B、菱形的对角线互相垂直平分,所以B选项的说法正确;
C、矩形的对角线相等且互相平分,所以C选项的说法错误;
D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、且
【解析】
根据分式和二次根式有意义的条件列不等式组求解即可.
【详解】
根据分式和二次根式有意义的条件可得
解得且
故答案为:且.
本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.
10、1.
【解析】
根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.
【详解】
解:将数据从小到大重新排列为:5、6、1、1、10、10,
所以这组数据的中位数为=1.
故答案为:1.
本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.
11、6或2或2
【解析】
由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.
【详解】
∵+3==6,
又x、y均为整数,
∴=,3=0或=3,3=3或=0,3=,
∴x=72,y=0或x=18,y=2或x=0,y=8,
∴=6或2或2.
故答案为:6或2或2.
本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.
12、10.8
【解析】
根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.
【详解】
解:这组数据的平均数是:(3+7+6-2+1)÷5=3,
则这组数据的方差是:
[(3-3)2+(7-3)2+(6-3)2+(-2-3)2+(1-3)2]=10.8
故答案为:10.8
本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
13、1
【解析】
设矩形的长和宽分别为a、b,根据根与系数的关系得到a+b=7,ab=12,利用勾股定理得到矩形的对角线长=,再利用完全平方公式和整体代入的方法可计算出矩形的对角线长为5,则根据矩形的性质得到矩形的对角线之和为1.
【详解】
设矩形的长和宽分别为a、b,
则a+b=7,ab=12,
所以矩形的对角线长==5,
所以矩形的对角线之和为1.
故答案为:1.
本题考查了根与系数的关系, 矩形的性质,解题关键在于掌握运算公式.
三、解答题(本大题共5个小题,共48分)
14、 (1)s2=-96t+2400(2)小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m
【解析】
(1)首先由小明的爸爸以96m/min速度从邮局同一条道路步行回家,求得小明的爸爸用的时间,即可得点D的坐标,然后由E(0,2400),F(25,0),利用待定系数法即可求得答案;
(2)首先求得直线BC的解析式,然后求直线BC与EF的交点,即可求得答案.
【详解】
解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,
∴小明的爸爸用的时间为:=25(min),
即OF=25,
如图:设s2与t之间的函数关系式为:s2=kt+b,
∵E(0,2400),F(25,0),
∴,
解得:,
∴s2与t之间的函数关系式为:s2=-96t+2400;
(2)如图:小明用了10分钟到邮局,
∴D点的坐标为(22,0),
设直线BD即s1与t之间的函数关系式为:s1=at+c(12≤t≤22),
∴解得:,
∴s1与t之间的函数关系式为:s1=-240t+5280(12≤t≤22),
当s1=s2时,小明在返回途中追上爸爸,
即-96t+2400=-240t+5280,
解得:t=20,
∴s1=s2=480,
∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.
15、(1)详见解析;(2),证明详见解析;(3)
【解析】
(1)依题意由SAS可证:.可推
(2)过点作,且,连接、,由SAS可证
可得,可得.利用勾股定理即可知:.即.
(3)延长至使,连接.设,,
则,,,,.由SAS可证,可得 ,,由角关系推出.
所以.推出,所以.得出结论.
【详解】
(1)证明:∵四边形为正方形,
∴,.
∵,
∴.
∴.
(2)结论:.
证明:如图2,过点作,且,连接、,
则,.
∵,,
∴
∴,.
∴.
∴.
即.
(3)解:延长至使,连接.
设,,
则,,.
∵四边形为正方形,
∴,,
,.
∴,
∴,,
.
∴.
∴.
∴.
∴.
该题综合性较强,运用了全等三角形、等腰三角形,以及三角形内角和等知识点,灵活运用全等是解题的关键.
16、;0
【解析】
先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.
【详解】
解:原式=1(x1-1)-1x1+x
=
=
当x=1时, 原式= 0
本题考查的是整式的化简求值,能够准确计算是解题的关键.
17、(1)(x﹣y)(3a+1b)(3a﹣1b);(1)m=2,n=9,(x+3)1.
【解析】
(1)用提取公因式和平方差公式进行因式分解即可解答;
(1)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.
【详解】
解:(1)原式=9a1(x﹣y)﹣4b1(x﹣y)
=(x﹣y)(9a1﹣4b1)
=(x﹣y)(3a+1b)(3a﹣1b);
(1)∵(x+1)(x+4)=x1+2x+8,甲看错了n,
∴m=2.
∵(x+1)(x+9)=x1+10x+9,乙看错了m,
∴n=9,
∴x1+mx+n=x1+2x+9=(x+3)1.
本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.
18、(1)6﹣2;(2)详见解析.
【解析】
(1)根据平行四边形性质可证:△BDE是等腰直角三角形,运用勾股定理可求DE和AD,AE即可求得;
(2)过点E作ET⊥AB交BA的延长线于T,构造直角三角形,由平行四边形性质及直角三角形性质可证:△BEQ≌△BET(AAS),△BFH≌△TEF(AAS),进而可证得结论.
【详解】
解:(1)如图1,过点D作DR⊥BC于R,
∵ABCD是平行四边形
∴AB∥CD,AD∥BC,AD=BC
∵∠C=60°,∠BDC=75°,
∴∠CBD=180°﹣(∠C+∠BDC)=45°
∴∠ADB=∠CBD=45°
∵BE⊥BD
∴∠DBE=90°
∴∠E=∠BDE=45°
∴DE=BD=12
∵DR⊥BC
∴∠BRD=∠CRD=90°
∴∠BDR=∠CBD=45°,
∴DR=BR
由勾股定理可得即
∴DR=BR=6
∵∠C=60°
∴∠CDR=90°﹣60°=30°
∴CR=2,CD=4
∴AD=BC=DR+CR=6+2,
∴AE=DE﹣AD=12﹣(6+2)=6﹣2;
(2)如图2,过点E作ET⊥AB交BA的延长线于T,则∠T=90°
∵ABCD是平行四边形
∴AB∥CD,
∴∠ABD=∠BDC
∵∠QEB=∠BDC
∴∠QEB=∠ABD
∵BG⊥CD,BE⊥BD,FH⊥FE
∴∠BGC=∠ABG=∠DBE=∠EFH=∠Q=90°
∴∠EBT+∠BET=∠EBT+∠ABD=∠EFT+∠BFH=∠EFT+∠FET=90°,
∴∠BET=∠ABD=∠QEB,∠BFH=∠FET
∵BE=BE,EF=FH
∴△BEQ≌△BET(AAS),△BFH≌△TEF(AAS)
∴BQ=BT,BH=FT
∵BF+FT=BT
∴BF+BH=BQ.
本题考查了平行四边形的性质、勾股定理以及全等三角形的性质与判定,解题的关键是灵活运用平行四边形及直角三角形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用二次根式的性质化简.
【详解】
=.
故选为:.
考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
20、1
【解析】
解:∵∴
∴或.∵,∴
∴
故答案为:1.
21、1
【解析】
由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.
【详解】
一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
故答案为1.
本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.
22、7,1
【解析】
由题意知,,
解得x=7,
这组数据中7,1各出现两次,出现次数最多,
故众数是7,1.
23、1
【解析】
若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.
【详解】
根据题意,得b=-1,a=2,
则ba=(-1)2=1,
故答案是:1.
考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)①见解析,②1.
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,∠FCH=∠EAG
∴△AEG≌△CFH(SAS),
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)①如图,连接AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=1,
∴AE=1.
本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键
25、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,
即∠APC=∠BPD,
在△APC和△BPD中,
∵AP=PB,∠APC=∠BPD,PC=PD,
∴△APC≌△BPD,
∴AC=BD.
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)四边形EFGH是正方形.
证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
考点:平行四边形的判定与性质;中点四边形.
26、(1)全体实数;(2)1,1;(3)见解析;(4)和.
【解析】
(1)根据函数解析式,可得答案;
(2)根据自变量与函数值得对应关系,可得答案;
(3)根据描点法画函数图象,可得答案;
(4)根据图象,可得答案.
【详解】
解:(1)∵函数y=|x+2|-x-1
∴自变量x的取值范围为全体实数
故答案为:全体实数;
(2)当x=-2时,m=|-2+2|+2-1=1,
当x=0时,n=|0+2|-0-1=1,
∴
故答案为:1,1;
(3)如下图
(4)在(3)中坐标系中作出直线y=-x+3,如下:
由图象得:一次函数y=-x+3的图象与函数y=|x+2|-x-1的图象交点的坐标为:(-6,9)和(2,1)
故答案为:(-6,9)和(2,1).
本题考查了函数的图象与性质,利用描点法画函数图象,利用图象得出两个函数的交点是解题关键.
题号
一
二
三
四
五
总分
得分
x
…
0
1
2
3
…
y
…
7
5
3
m
1
n
1
1
1
…
2024-2025学年广东省揭阳市揭西县数学九上开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年广东省揭阳市揭西县数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省江门市江海区九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年广东省江门市江海区九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省江门市恩平市九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年广东省江门市恩平市九上数学开学教学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。