搜索
    上传资料 赚现金
    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析)
    立即下载
    加入资料篮
    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析)01
    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析)02
    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析)03
    还剩42页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析)

    展开
    这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析),共45页。试卷主要包含了已知实数,满足,则的最大值是,双曲线的左、右焦点分别为,,设椭圆,的离心率分别为,等内容,欢迎下载使用。

    1.(2023•乙卷)设为平面坐标系的坐标原点,在区域内随机取一点,记该点为,则直线的倾斜角不大于的概率为
    A.B.C.D.
    2.(2023•乙卷)已知实数,满足,则的最大值是
    A.B.4C.D.7
    3.(2023•甲卷)设,为椭圆的两个焦点,点在上,若,则
    A.1B.2C.4D.5
    4.(2023•天津)双曲线的左、右焦点分别为,.过作其中一条渐近线的垂线,垂足为.已知,直线的斜率为,则双曲线的方程为
    A.B.C.D.
    5.(2023•甲卷)已知双曲线的离心率为,其中一条渐近线与圆交于,两点,则
    A.B.C.D.
    6.(2023•乙卷)设,为双曲线上两点,下列四个点中,可为线段中点的是
    A.B.C.D.
    7.(2023•乙卷)已知的半径为1,直线与相切于点,直线与交于,两点,为的中点,若,则的最大值为
    A.B.C.D.
    8.(2023•上海)已知,是曲线上两点,若存在点,使得曲线上任意一点都存在使得,则称曲线是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则
    A.①成立,②成立B.①成立,②不成立
    C.①不成立,②成立D.①不成立,②不成立
    9.(2023•甲卷)已知双曲线的离心率为,的一条渐近线与圆交于,两点,则
    A.B.C.D.
    10.(2023•新高考Ⅰ)设椭圆,的离心率分别为,.若,则
    A.B.C.D.
    11.(2023•新高考Ⅰ)过点与圆相切的两条直线的夹角为,则
    A.1B.C.D.
    12.(2023•新高考Ⅱ)已知椭圆的左焦点和右焦点分别为和,直线与交于点,两点,若△面积是△面积的两倍,则
    A.B.C.D.
    13.(2022•甲卷)椭圆的左顶点为,点,均在上,且关于轴对称.若直线,的斜率之积为,则的离心率为
    A.B.C.D.
    14.(2022•北京)若直线是圆的一条对称轴,则
    A.B.C.1D.
    15.(2022•甲卷)已知椭圆的离心率为,,分别为的左、右顶点,为的上顶点.若,则的方程为
    A.B.
    C.D.
    二.多选题
    16.(2023•新高考Ⅱ)设为坐标原点,直线过抛物线的焦点,且与交于,两点,为的准线,则
    A.B.
    C.以为直径的圆与相切D.为等腰三角形
    17.(2022•新高考Ⅰ)已知为坐标原点,点在抛物线上,过点的直线交于,两点,则
    A.的准线为B.直线与相切
    C.D.
    18.(2022•新高考Ⅱ)已知为坐标原点,过抛物线焦点的直线与交于,两点,其中在第一象限,点.若,则
    A.直线的斜率为B.
    C.D.
    19.(2022•乙卷)双曲线的两个焦点为,,以的实轴为直径的圆记为,过作的切线与交于,两点,且,则的离心率为
    A.B.C.D.
    三.填空题
    20.(2023•乙卷)已知点在抛物线上,则到的准线的距离为 .
    21.(2023•天津)过原点的一条直线与圆相切,交曲线于点,若,则的值为 .
    22.(2023•上海)已知圆的面积为,则 .
    23.(2023•新高考Ⅱ)已知直线与交于,两点,写出满足“面积为”的的一个值 .
    24.(2023•新高考Ⅰ)已知双曲线的左、右焦点分别为,.点在上,点在轴上,,,则的离心率为 .
    25.(2022•天津)若直线与圆相交所得的弦长为,则 .
    26.(2022•浙江)已知双曲线的左焦点为,过且斜率为的直线交双曲线于点,,交双曲线的渐近线于点,且.若,则双曲线的离心率是 .
    27.(2022•甲卷)设点在直线上,点和均在上,则的方程为 .
    28.(2022•乙卷)过四点,,,中的三点的一个圆的方程为 .
    29.(2022•北京)已知双曲线的渐近线方程为,则 .
    30.(2022•新高考Ⅱ)已知直线与椭圆在第一象限交于,两点,与轴、轴分别相交于,两点,且,,则的方程为 .
    31.(2022•甲卷)若双曲线的渐近线与圆相切,则 .
    32.(2022•新高考Ⅱ)设点,,若直线关于对称的直线与圆有公共点,则的取值范围是 .
    33.(2022•新高考Ⅰ)写出与圆和都相切的一条直线的方程 .
    34.(2022•新高考Ⅰ)已知椭圆,的上顶点为,两个焦点为,,离心率为.过且垂直于的直线与交于,两点,,则的周长是 .
    四.解答题
    35.(2023•乙卷)已知椭圆的离心率为,点在上.
    (1)求的方程;
    (2)过点的直线交于点,两点,直线,与轴的交点分别为,,证明:线段的中点为定点.
    36.(2023•天津)设椭圆的左、右顶点分别为,.右焦点为,已知,.
    (Ⅰ)求椭圆方程及其离心率;
    (Ⅱ)已知点是椭圆上一动点(不与顶点重合),直线交轴于点,若△的面积是△面积的二倍,求直线的方程.
    37.(2023•新高考Ⅰ)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
    (1)求的方程;
    (2)已知矩形有三个顶点在上,证明:矩形的周长大于.
    38.(2023•新高考Ⅱ)双曲线中心为坐标原点,左焦点为,,离心率为.
    (1)求的方程;
    (2)记的左、右顶点分别为,,过点的直线与的左支交于,两点,在第二象限,直线与交于,证明在定直线上.
    39.(2022•天津)椭圆的右焦点为、右顶点为,上顶点为,且满足.
    (1)求椭圆的离心率;
    (2)直线与椭圆有唯一公共点,与轴相交于异于.记为坐标原点,若,且的面积为,求椭圆的标准方程.
    40.(2022•上海)设有椭圆方程,直线,下端点为,在上,左、右焦点分别为,、,.
    (1),中点在轴上,求点的坐标;
    (2)直线与轴交于,直线经过右焦点,在中有一内角余弦值为,求;
    (3)在椭圆上存在一点到距离为,使,随的变化,求的最小值.
    41.(2022•浙江)如图,已知椭圆.设,是椭圆上异于的两点,且点在线段上,直线,分别交直线于,两点.
    (Ⅰ)求点到椭圆上点的距离的最大值;
    (Ⅱ)求的最小值.
    42.(2022•新高考Ⅰ)已知点在双曲线上,直线交于,两点,直线,的斜率之和为0.
    (1)求的斜率;
    (2)若,求的面积.
    43.(2022•北京)已知椭圆的一个顶点为,焦距为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)过点作斜率为的直线与椭圆交于不同的两点,,直线,分别与轴交于点,.当时,求的值.
    44.(2022•新高考Ⅱ)已知双曲线的右焦点为,渐近线方程为.
    (1)求的方程;
    (2)过的直线与的两条渐近线分别交于,两点,点,,,在上,且,.过且斜率为的直线与过且斜率为的直线交于点.从下面①②③中选取两个作为条件,证明另外一个成立.
    ①在上;②;③.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    第7讲 解析几何(2022-2023年高考真题)
    一.选择题
    1.(2023•乙卷)设为平面坐标系的坐标原点,在区域内随机取一点,记该点为,则直线的倾斜角不大于的概率为
    A.B.C.D.
    【答案】
    【解析】如图,为第一象限与第三象限的角平分线,
    根据题意可得构成的区域为圆环,
    而直线的倾斜角不大于的点构成的区域为图中阴影部分,
    所求概率为.
    故选:.
    2.(2023•乙卷)已知实数,满足,则的最大值是
    A.B.4C.D.7
    【答案】
    【解析】根据题意,,即,其几何意义是以为圆心,半径为3的圆,
    设,变形可得,其几何意义为直线,
    直线与圆有公共点,则有,解可得,
    故的最大值为.
    故选:.
    3.(2023•甲卷)设,为椭圆的两个焦点,点在上,若,则
    A.1B.2C.4D.5
    【答案】
    【解析】根据题意,点在椭圆上,满足,可得,
    又由椭圆,其中,
    则有,,
    可得,
    故选:.
    4.(2023•天津)双曲线的左、右焦点分别为,.过作其中一条渐近线的垂线,垂足为.已知,直线的斜率为,则双曲线的方程为
    A.B.C.D.
    【答案】
    【解析】因为过作一条渐近线的垂线,垂足为,
    则,
    所以①,
    联立,可得,,即,,
    因为直线的斜率,
    整理得②,
    ①②联立得,,,
    故双曲线方程为.
    故选:.
    5.(2023•甲卷)已知双曲线的离心率为,其中一条渐近线与圆交于,两点,则
    A.B.C.D.
    【答案】
    【解析】双曲线的离心率为,
    可得,所以,
    所以双曲线的渐近线方程为:,
    一条渐近线与圆交于,两点,圆的圆心,半径为1,
    圆的圆心到直线的距离为:,
    所以.
    故选:.
    6.(2023•乙卷)设,为双曲线上两点,下列四个点中,可为线段中点的是
    A.B.C.D.
    【答案】
    【解析】设,,,,中点为,,

    ①②得,
    即,
    即或.
    故选:.
    7.(2023•乙卷)已知的半径为1,直线与相切于点,直线与交于,两点,为的中点,若,则的最大值为
    A.B.C.D.
    【答案】
    【解析】如图,设,则,
    根据题意可得:,
    ,又,
    当,,时,
    取得最大值.
    故选:.
    8.(2023•上海)已知,是曲线上两点,若存在点,使得曲线上任意一点都存在使得,则称曲线是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则
    A.①成立,②成立B.①成立,②不成立
    C.①不成立,②成立D.①不成立,②不成立
    【答案】
    【解析】椭圆是封闭的,总可以找到满足题意的点,使得成立,故①正确,
    在双曲线中,,而是个固定值,则无法对任意的,都存在,使得,故②错误.
    故选:.
    9.(2023•甲卷)已知双曲线的离心率为,的一条渐近线与圆交于,两点,则
    A.B.C.D.
    【答案】
    【解析】双曲线的离心率为,
    可得,所以,
    所以双曲线的渐近线方程为:,
    一条渐近线与圆交于,两点,圆的圆心,半径为1,
    圆的圆心到直线的距离为:,
    所以.
    故选:.
    10.(2023•新高考Ⅰ)设椭圆,的离心率分别为,.若,则
    A.B.C.D.
    【答案】
    【解析】由椭圆可得,,,
    椭圆的离心率分别为,
    ,,,

    或(舍去).
    故选:.
    11.(2023•新高考Ⅰ)过点与圆相切的两条直线的夹角为,则
    A.1B.C.D.
    【答案】
    【解析】圆可化为,则圆心,半径为;
    设,切线为、,则,
    中,,所以,
    所以.
    故选:.
    12.(2023•新高考Ⅱ)已知椭圆的左焦点和右焦点分别为和,直线与交于点,两点,若△面积是△面积的两倍,则
    A.B.C.D.
    【答案】
    【解析】记直线与轴交于,
    椭圆的左,右焦点分别为,,,,
    由△面积是△的2倍,可得,
    ,解得或,
    或,或,
    联立可得,,
    直线与相交,所以△,解得,
    不符合题意,
    故.
    故选:.
    13.(2022•甲卷)椭圆的左顶点为,点,均在上,且关于轴对称.若直线,的斜率之积为,则的离心率为
    A.B.C.D.
    【答案】
    【解析】已知,设,,则,,


    故①,
    ,即②,
    ②代入①整理得:,

    故选:.
    14.(2022•北京)若直线是圆的一条对称轴,则
    A.B.C.1D.
    【答案】
    【解析】圆的圆心坐标为,
    直线是圆的一条对称轴,
    圆心在直线上,可得,即.
    故选:.
    15.(2022•甲卷)已知椭圆的离心率为,,分别为的左、右顶点,为的上顶点.若,则的方程为
    A.B.
    C.D.
    【答案】
    【解析】由椭圆的离心率可设椭圆方程为,
    则,
    由平面向量数量积的运算法则可得:
    ,,
    则椭圆方程为.
    故选:.
    二.多选题
    16.(2023•新高考Ⅱ)设为坐标原点,直线过抛物线的焦点,且与交于,两点,为的准线,则
    A.B.
    C.以为直径的圆与相切D.为等腰三角形
    【答案】
    【解析】直线过抛物线的焦点,可得,所以,
    所以正确;
    抛物线方程为:,与交于,两点,
    直线方程代入抛物线方程可得:,

    所以,所以不正确;
    ,的中点的横坐标:,中点到抛物线的准线的距离为:,
    所以以为直径的圆与相切,所以正确;

    不妨可得,,,,
    ,,,
    所以不是等腰三角形,所以不正确.
    故选:.
    17.(2022•新高考Ⅰ)已知为坐标原点,点在抛物线上,过点的直线交于,两点,则
    A.的准线为B.直线与相切
    C.D.
    【答案】
    【解析】点在抛物线上,
    ,解得,
    抛物线的方程为,准线方程为,选项错误;
    由于,,则,直线的方程为,
    联立,可得,解得,故直线与抛物线相切,选项正确;
    根据对称性及选项的分析,不妨设过点的直线方程为,与抛物线在第一象限交于,,,,
    联立,消去并整理可得,则,,,
    ,由于等号在时才能取到,故等号不成立,选项正确;
    ,选项正确.
    故选:.
    18.(2022•新高考Ⅱ)已知为坐标原点,过抛物线焦点的直线与交于,两点,其中在第一象限,点.若,则
    A.直线的斜率为B.
    C.D.
    【答案】
    【解析】如图,
    ,,,且,,,
    由抛物线焦点弦的性质可得,则,则,,
    ,故正确;
    ,,,故错误;
    ,故正确;
    ,,,,,
    ,,
    ,均为锐角,可得,故正确.
    故选:.
    19.(2022•乙卷)双曲线的两个焦点为,,以的实轴为直径的圆记为,过作的切线与交于,两点,且,则的离心率为
    A.B.C.D.
    【答案】
    【解析】当直线与双曲线交于两支时,设双曲线的方程为,
    设过的切线与圆相切于点,
    则,,又,
    所以,
    过点作于点,
    所以,又为的中点,
    所以,,
    因为,,所以,
    所以,则,
    所以,
    由双曲线的定义可知,
    所以,可得,即,
    所以的离心率.
    情况二:当直线与双曲线交于一支时,
    如图,记切点为,连接,则,,
    过作于,则,因为,所以,,
    ,即,
    所以,正确.
    故选:.
    三.填空题
    20.(2023•乙卷)已知点在抛物线上,则到的准线的距离为 .
    【答案】.
    【解析】点在抛物线上,
    则,解得,
    由抛物线的定义可知,到的准线的距离为.
    故答案为:.
    21.(2023•天津)过原点的一条直线与圆相切,交曲线于点,若,则的值为 .
    【答案】6.
    【解析】如图,
    由题意,不妨设直线方程为,即,
    由圆的圆心到的距离为,
    得,解得,
    则直线方程为,
    联立,得或,即.
    可得,解得.
    故答案为:6.
    22.(2023•上海)已知圆的面积为,则 .
    【答案】.
    【解析】圆化为标准方程为:,
    圆的面积为,圆的半径为1,


    故答案为:.
    23.(2023•新高考Ⅱ)已知直线与交于,两点,写出满足“面积为”的的一个值 .由圆,可得圆心坐标为,半径为,
    因为的面积为,可得,
    解得,设所以,
    可得,,或,
    或,
    圆心眼到直线的距离或,
    或,
    解得或.
    故答案为:2(或或或.
    24.(2023•新高考Ⅰ)已知双曲线的左、右焦点分别为,.点在上,点在轴上,,,则的离心率为 .(法一)如图,设,,,
    设,则,
    又,则,可得,
    又,且,
    则,化简得.
    又点在上,
    则,整理可得,
    代,可得,即,
    解得或(舍去),
    故.
    (法二)由,得,
    设,由对称性可得,
    则,
    设,则,
    所以,解得,
    所以,
    在△ 中,由余弦定理可得,
    即,则.
    故答案为:.
    25.(2022•天津)若直线与圆相交所得的弦长为,则 .
    【答案】2.
    【解析】圆心到直线的距离,
    又直线与圆相交所得的弦长为,


    解得.
    故答案为:2.
    26.(2022•浙江)已知双曲线的左焦点为,过且斜率为的直线交双曲线于点,,交双曲线的渐近线于点,且.若,则双曲线的离心率是 .
    【答案】.
    【解析】(法一)如图,过点作轴于点,过点作轴于点,
    由于,且,则点在渐近线上,不妨设,
    设直线的倾斜角为,则,则,即,则,

    又,则,
    又,则,则,
    点的坐标为,
    ,即,

    (法二)由,解得,
    又,
    所以点的纵坐标为,
    代入方程中,解得,
    所以,代入双曲线方程中,可得,
    所以.
    故答案为:.
    27.(2022•甲卷)设点在直线上,点和均在上,则的方程为 .
    【答案】.
    【解析】由点在直线上,可设,
    由于点和均在上,圆的半径为,
    求得,可得半径为,圆心,
    故的方程为,
    故答案为:.
    28.(2022•乙卷)过四点,,,中的三点的一个圆的方程为 .设过点,,的圆的方程为,
    即,解得,,,
    所以过点,,圆的方程为.
    同理可得,过点,,圆的方程为.
    过点,,圆的方程为.
    过点,,圆的方程为.
    故答案为:(或或或.
    29.(2022•北京)已知双曲线的渐近线方程为,则 .
    【答案】.
    【解析】双曲线化为标准方程可得,
    所以,双曲线的渐近线方程,
    又双曲线的渐近线方程为,
    所以,解得.
    故答案为:.
    30.(2022•新高考Ⅱ)已知直线与椭圆在第一象限交于,两点,与轴、轴分别相交于,两点,且,,则的方程为 .
    【答案】.
    【解析】设,,,,线段的中点为,
    由,,
    相减可得:,
    则,
    设直线的方程为:,,,,,,
    ,,,
    ,解得,
    ,,化为:.
    ,,解得.
    的方程为,即,
    故答案为:.
    31.(2022•甲卷)若双曲线的渐近线与圆相切,则 .
    【答案】.
    【解析】双曲线的渐近线:,
    圆的圆心与半径1,
    双曲线的渐近线与圆相切,
    ,解得,舍去.
    故答案为:.
    32.(2022•新高考Ⅱ)设点,,若直线关于对称的直线与圆有公共点,则的取值范围是 .
    【答案】,.
    【解析】点,,,所以直线关于对称的直线的斜率为:,所以对称直线方程为:,即:,
    的圆心,半径为1,
    所以,得,解得,.
    故答案为:,.
    33.(2022•新高考Ⅰ)写出与圆和都相切的一条直线的方程 .
    【答案】(填,都正确).
    【解析】圆的圆心坐标为,半径,
    圆的圆心坐标为,半径,
    如图:
    ,两圆外切,由图可知,与两圆都相切的直线有三条.
    ,的斜率为,设直线,即,
    由,解得(负值舍去),则;
    由图可知,;与关于直线对称,
    联立,解得与的一个交点为,在上取一点,
    该点关于的对称点为,,则,解得对称点为,.
    ,则,即.
    与圆和都相切的一条直线的方程为:
    (填,都正确).
    故答案为:(填,都正确).
    34.(2022•新高考Ⅰ)已知椭圆,的上顶点为,两个焦点为,,离心率为.过且垂直于的直线与交于,两点,,则的周长是 .
    【答案】13.
    【解析】椭圆的离心率为,
    不妨可设椭圆,,
    的上顶点为,两个焦点为,,
    △为等边三角形,
    过且垂直于的直线与交于,两点,

    由等腰三角形的性质可得,,,
    设直线方程为,,,,,
    将其与椭圆联立化简可得,,
    由韦达定理可得,,,
    ,解得,
    的周长等价于.
    故答案为:13.
    四.解答题
    35.(2023•乙卷)已知椭圆的离心率为,点在上.
    (1)求的方程;
    (2)过点的直线交于点,两点,直线,与轴的交点分别为,,证明:线段的中点为定点.
    【解析】(1)由题意,,解得.
    椭圆的方程为;
    证明:(2)如图,
    要使过点的直线交于点,两点,则的斜率存在且小于0,
    设,即,,,,,,
    联立,得.
    △.
    ,,
    直线,取,得;
    直线,取,得.

    的中点为,为定点.
    36.(2023•天津)设椭圆的左、右顶点分别为,.右焦点为,已知,.
    (Ⅰ)求椭圆方程及其离心率;
    (Ⅱ)已知点是椭圆上一动点(不与顶点重合),直线交轴于点,若△的面积是△面积的二倍,求直线的方程.
    【解析】(Ⅰ)由题意可知,,解得,

    则椭圆方程为,椭圆的离心率为;
    (Ⅱ)由题意可知,直线的斜率存在且不为0,
    当时,直线方程为,取,得.
    联立,得.
    △,
    ,得,则.


    ,即,得;
    同理求得当时,.
    直线的方程为.
    37.(2023•新高考Ⅰ)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
    (1)求的方程;
    (2)已知矩形有三个顶点在上,证明:矩形的周长大于.
    【分析】
    (1)设点坐标,结合几何条件即可得出的方程.
    (2)首先利用平移性,化简的方程可简化计算,核心是把两邻边的和用其他方式表示出来.
    【详解】
    (1)设点点坐标为,由题意得,
    两边平方可得:,
    化简得:,符合题意.
    故的方程为.
    (2)解法一:不妨设,,三点在上,且.
    设,,,
    则,.
    由题意,,即,
    显然,于是.
    此时,..于是,.
    不妨设,则,


    设,则,即,
    又.
    显然,为最小值点.故,
    故矩形的周长为.
    注意这里有两个取等条件,一个是,另一个是,
    这显然是无法同时取到的,所以等号不成立,命题得证.
    解法二:不妨设,,在抛物线上,不在抛物线上,欲证命题为.
    由图象的平移可知,将抛物线看作不影响问题的证明.
    设,,平移坐标系使为坐标原点,
    则新抛物线方程为,写为极坐标方程,
    即,即.
    欲证明的结论为,
    也即.
    不妨设,将不等式左边看成关于的函数,根据绝对值函数的性质,
    其最小值当即时取得,
    因此欲证不等式为,即,
    根据均值不等式,有

    由题意,等号不成立,故原命题得证.
    38.(2023•新高考Ⅱ)双曲线中心为坐标原点,左焦点为,,离心率为.
    (1)求的方程;
    (2)记的左、右顶点分别为,,过点的直线与的左支交于,两点,在第二象限,直线与交于,证明在定直线上.
    【分析】
    (1)根据已知条件,结合双曲线的性质,即可求解;
    (2)设出直线的方程,并与双曲线联立,再结合韦达定理,推得,,设出,直线方程,再联立方程,即可求解.
    【详解】
    (1)双曲线中心为原点,左焦点为,,离心率为,
    则,解得,
    故双曲线的方程为;
    (2)证明:过点的直线与的左支交于,两点,
    则可设直线的方程为,,,,,
    记的左,右顶点分别为,,
    则,,
    联立,化简整理可得,,
    故△且,
    ,,
    直线的方程为,直线方程,


    故,解得,
    所以,
    故点在定直线上运动.
    39.(2022•天津)椭圆的右焦点为、右顶点为,上顶点为,且满足.
    (1)求椭圆的离心率;
    (2)直线与椭圆有唯一公共点,与轴相交于异于.记为坐标原点,若,且的面积为,求椭圆的标准方程.
    【解析】(1),,

    ,,

    (2)由(1)可知椭圆为,
    即,
    设直线,联立,消去可得:
    ,又直线与椭圆只有一个公共点,
    △,,
    又,,
    又,,
    解得,,
    又的面积为,
    ,,
    又,,,,
    椭圆的标准方程为.
    40.(2022•上海)设有椭圆方程,直线,下端点为,在上,左、右焦点分别为,、,.
    (1),中点在轴上,求点的坐标;
    (2)直线与轴交于,直线经过右焦点,在中有一内角余弦值为,求;
    (3)在椭圆上存在一点到距离为,使,随的变化,求的最小值.
    【解析】(1)由题意可得,

    的中点在轴上,
    的纵坐标为,
    代入得.
    (2)由直线方程可知,
    ①若,则,即,


    ②若,则,
    ,,
    ,.
    即,,,
    综上或.
    (3)设,
    由点到直线距离公式可得,
    很明显椭圆在直线的左下方,则,
    即,
    ,,
    据此可得,,
    整理可得,即,
    从而.
    即的最小值为.
    41.(2022•浙江)如图,已知椭圆.设,是椭圆上异于的两点,且点在线段上,直线,分别交直线于,两点.
    (Ⅰ)求点到椭圆上点的距离的最大值;
    (Ⅱ)求的最小值.
    【解析】(Ⅰ)设椭圆上任意一点,则,,,
    而函数的对称轴为,则其最大值为,
    ,即点到椭圆上点的距离的最大值为;
    (Ⅱ)设直线,
    联立直线与椭圆方程有,消去并整理可得,,
    由韦达定理可得,,

    设,,,,直线,直线,
    联立以及,
    可得,
    由弦长公式可得

    当且仅当时等号成立,
    的最小值为.
    42.(2022•新高考Ⅰ)已知点在双曲线上,直线交于,两点,直线,的斜率之和为0.
    (1)求的斜率;
    (2)若,求的面积.
    【解析】(1)将点代入双曲线方程得,
    化简得,,故双曲线方程为,
    由题显然直线的斜率存在,设,设,,,
    则联立双曲线得:,
    故,,

    化简得:,
    故,
    即,而直线不过点,故;
    (2)设直线的倾斜角为,由,
    ,得
    由,,
    得,即,
    联立,及得,
    同理,
    故,
    而,由,得,
    故.
    43.(2022•北京)已知椭圆的一个顶点为,焦距为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)过点作斜率为的直线与椭圆交于不同的两点,,直线,分别与轴交于点,.当时,求的值.
    【解析】(Ⅰ)由题意得,
    ,,,,
    椭圆的方程为.
    (Ⅱ)设过点的直线为,,,,,
    联立得,即,
    直线与椭圆相交,△,,
    由韦达定理得,,
    ,直线为,
    令,则,,,同理,,

    ,,

    44.(2022•新高考Ⅱ)已知双曲线的右焦点为,渐近线方程为.
    (1)求的方程;
    (2)过的直线与的两条渐近线分别交于,两点,点,,,在上,且,.过且斜率为的直线与过且斜率为的直线交于点.从下面①②③中选取两个作为条件,证明另外一个成立.
    ①在上;②;③.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    【解析】(1)由题意可得,,
    解得,,
    因此的方程为,
    (2)解法一:设直线的方程为,,将直线的方程代入可得,
    △,
    ,,


    设点的坐标为,,则,
    两式相减可得,


    解得,
    两式相加可得,


    解得,
    ,其中为直线的斜率;
    若选择①②:
    设直线的方程为,并设的坐标为,,的坐标为,,
    则,解得,,
    同理可得,,
    ,,
    此时点的坐标满足,解得,,
    为的中点,即;
    若选择①③:
    当直线的斜率不存在时,点即为点,此时不在直线上,矛盾,
    当直线的斜率存在时,设直线的方程为,并设的坐标为,,的坐标为,,
    则,解得,,
    同理可得,,
    此时,

    由于点同时在直线上,故,解得,
    因此.
    若选择②③,
    设直线的方程为,并设的坐标为,,的坐标为,,
    则,解得,,
    同理可得,,
    设的中点,,则,,
    由于,故在的垂直平分线上,即点在直线上,
    将该直线联立,解得,,
    即点恰为中点,故点在直线上.
    (2)解法二:由已知得直线的斜率存在且不为零,直线的斜率不为零,
    若选由①②③,或选由②③①:由②成立可知直线的斜率存在且不为0.
    若选①③②,则为线段的中点,假设的斜率不存在,
    则由双曲线的对称性可知在轴上,即为焦点,
    此时由对称性可知、关于轴对称,从而,已知不符.
    综上,直线的斜率存在且不为0,
    直线的斜率为,直线的方程为.
    则条件①在直线上,等价于,
    两渐近线的方程合并为,
    联立方程组,消去并化简得:,
    设,,,,线段中点为,,
    则.,
    设,,
    则条件③等价于,
    移项并利用平方差公式整理得:






    由题意知直线的斜率为,直线的斜率为,
    由,,

    直线的斜率,
    直线,即,
    代入双曲线的方程为,即中,
    得,
    解得的横坐标为,
    同理,,,

    条件②等价于,
    综上所述:
    条件①在上等价于,
    条件②等价于,
    条件③等价于.
    选①②③:
    由①②解得,③成立;
    选①③②:
    由①③解得:,,,②成立;
    选②③①:
    由②③解得:,,,①成立.
    相关试卷

    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第8讲计数原理与概率统计(2022-2023年高考真题)(原卷版+解析): 这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第8讲计数原理与概率统计(2022-2023年高考真题)(原卷版+解析),共31页。试卷主要包含了若,则等内容,欢迎下载使用。

    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第6讲立体几何(2022-2023年高考真题)(原卷版+解析): 这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第6讲立体几何(2022-2023年高考真题)(原卷版+解析),共51页。试卷主要包含了某几何体的三视图如图所示(单位等内容,欢迎下载使用。

    新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析): 这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析),共22页。试卷主要包含了若,,,则,若,满足约束条件则的最大值是,记为等差数列的前项和,记为等比数列的前项和,若,,则,若,满足,则等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map