- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第4讲平面向量与复数(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第8讲计数原理与概率统计(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)能力拓展01玩转指对幂比较大小(原卷版+解析) 试卷 0 次下载
新高考数学第一轮复习讲义命题方向全归类(新高考专用)第6讲立体几何(2022-2023年高考真题)(原卷版+解析)
展开1.(2023•乙卷)如图,网格纸上绘制的是个零件的三视图,网格小正方形的边长为1,则该零件的表面积
A.24B.26C.28D.30
2.(2023•甲卷)在三棱锥中,是边长为2的等边三角形,,,则该棱锥的体积为
A.1B.C.2D.3
3.(2023•乙卷)已知圆锥的底面半径为,为底面圆心,,为圆锥的母线,,若的面积等于,则该圆锥的体积为
A.B.C.D.
4.(2023•天津)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为
A.B.C.D.
5.(2023•甲卷)在四棱锥中,底面为正方形,,,,则的面积为
A.B.C.D.
6.(2023•乙卷)已知为等腰直角三角形,为斜边,为等边三角形,若二面角为,则直线与平面所成角的正切值为
A.B.C.D.
7.(2022•浙江)如图,已知正三棱柱,,,分别是棱,上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则
A.B.C.D.
8.(2022•甲卷)在长方体中,已知与平面和平面所成的角均为,则
A.
B.与平面所成的角为
C.
D.与平面所成的角为
9.(2022•浙江)某几何体的三视图如图所示(单位:,则该几何体的体积(单位:是
A.B.C.D.
10.(2022•北京)已知正三棱锥的六条棱长均为6,是及其内部的点构成的集合.设集合,则表示的区域的面积为
A.B.C.D.
11.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是
A.,B.,C.,D.,
12.(2022•乙卷)已知球的半径为1,四棱锥的顶点为,底面的四个顶点均在球的球面上,则当该四棱锥的体积最大时,其高为
A.B.C.D.
13.(2022•甲卷)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为
A.8B.12C.16D.20
14.(2022•乙卷)在正方体中,,分别为,的中点,则
A.平面平面B.平面平面
C.平面平面D.平面平面
15.(2022•甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则
A.B.C.D.
16.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为
A.B.C.D.
17.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为
A.B.C.D.
二.多选题
18.(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:的正方体容器(容器壁厚度忽略不计)内的有
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
19.(2023•新高考Ⅱ)已知圆锥的顶点为,底面圆心为,为底面直径,,,点在底面圆周上,且二面角为,则
A.该圆锥的体积为B.该圆锥的侧面积为
C.D.的面积为
20.(2022•新高考Ⅰ)已知正方体,则
A.直线与所成的角为
B.直线与所成的角为
C.直线与平面所成的角为
D.直线与平面所成的角为
21.(2022•新高考Ⅱ)如图,四边形为正方形,平面,,.记三棱锥,,的体积分别为,,,则
A.B.C.D.
三.填空题
22.(2023•上海)空间中有三个点、、,且,在空间中任取2个不同的点,使得它们与、、恰好成为一个正四棱锥的五个顶点,则不同的取法有 种.
23.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .
24.(2023•新高考Ⅰ)在正四棱台中,,,,则该棱台的体积为 .
25.(2023•乙卷)已知点,,,均在半径为2的球面上,是边长为3的等边三角形,平面,则 .
26.(2022•上海)已知圆柱的高为4,底面积为,则圆柱的侧面积为 .
四.解答题
27.(2023•乙卷)如图,在三棱锥中,,,,,,,,的中点分别为,,,点在上,.
(1)证明:平面;
(2)证明:平面平面;
(3)求二面角的正弦值.
28.(2023•上海)已知直四棱柱,,,,,.
(1)证明:直线平面;
(2)若该四棱柱的体积为36,求二面角的大小.
29.(2023•甲卷)在三棱柱ABC﹣A1B1C1中,AA1=2,A1C⊥底面ABC,∠ACB=90°,A1到平面BCC1B1的距离为1.
(1)求证:AC=A1C;
(2)若直线AA1与BB1距离为2,求AB1与平面BCC1B1所成角的正弦值.
30.(2023•天津)如图,已知平面,,,,,分别为,中点.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成角的余弦值;
(Ⅲ)求点到平面的距离.
31.(2023•新高考Ⅱ)如图,三棱锥中,,,,为中点.
(1)证明;
(2)点满足,求二面角的正弦值.
32.(2023•新高考Ⅰ)如图,在正四棱柱中,,.点,,,分别在棱,,,上,,,.
(1)证明:;
(2)点在棱上,当二面角为时,求.
33.(2022•天津)直三棱柱中,,,,为中点,为中点,为中点.
(1)求证:平面;
(2)求直线与平面的正弦值;
(3)求平面与平面夹角的余弦值.
34.(2022•浙江)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设,分别为,的中点.
(Ⅰ)证明:;
(Ⅱ)求直线与平面所成角的正弦值.
35.(2022•甲卷)在四棱锥中,底面,,,,.
(1)证明:;
(2)求与平面所成的角的正弦值.
36.(2022•北京)如图,在三棱柱中,侧面为正方形,平面平面,,,分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)再从条件①、条件②这两个条件中选择一个作为已知,求直线与平面所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
37.(2022•新高考Ⅱ)如图,是三棱锥的高,,,为的中点.
(1)证明:平面;
(2)若,,,求二面角的正弦值.
38.(2022•新高考Ⅰ)如图,直三棱柱的体积为4,△的面积为.
(1)求到平面的距离;
(2)设为的中点,,平面平面,求二面角的正弦值.
39.(2022•乙卷)如图,四面体中,,,,为的中点.
(1)证明:平面平面;
(2)设,,点在上,当的面积最小时,求与平面所成的角的正弦值.
40.(2022•上海)如图所示三棱锥,底面为等边,为边中点,且底面,.
(1)求三棱锥体积;
(2)若为中点,求与面所成角大小.
第6讲 立体几何(2022-2023年高考真题)
一.选择题
1.(2023•乙卷)如图,网格纸上绘制的是个零件的三视图,网格小正方形的边长为1,则该零件的表面积
A.24B.26C.28D.30
【答案】
【解析】根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.
如图所示:
故该几何体的表面积为:.
故选:.
2.(2023•甲卷)在三棱锥中,是边长为2的等边三角形,,,则该棱锥的体积为
A.1B.C.2D.3
【答案】
【解析】如图,
,,取的中点,连接,,
可得,,
又,、平面,平面,
在与中,求得,
在中,由,,得,则,
,
.
故选:.
3.(2023•乙卷)已知圆锥的底面半径为,为底面圆心,,为圆锥的母线,,若的面积等于,则该圆锥的体积为
A.B.C.D.
【答案】
【解析】根据题意,设该圆锥的高为,即,取的中点,连接、,
由于圆锥的底面半径为,即,
而,故,
同时,
中,,为的中点,则有,
又由的面积等于,即,变形可得,
而,则有,解可得,
故该圆锥的体积.
故选:.
4.(2023•天津)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为
A.B.C.D.
【答案】
【解析】在三棱锥中,线段上的点满足,线段上的点满足,
所以,
设到平面的距离,到平面的距离,则,
则三棱锥的体积为.
故三棱锥和三棱锥的体积之比为.
故选:.
5.(2023•甲卷)在四棱锥中,底面为正方形,,,,则的面积为
A.B.C.D.
【答案】
【解析】如图,设在底面的射影为,连接,
设,,且,
则,或,
易知,又,
则根据最小角定理(三余弦定理)可得:
,
或,
或,
或,
或,又,
,,,
,,
再根据最小角定理可得:
,
,又,,
的面积为.
故选:.
6.(2023•乙卷)已知为等腰直角三角形,为斜边,为等边三角形,若二面角为,则直线与平面所成角的正切值为
A.B.C.D.
【答案】
【解析】如图,取的中点,连接,,
则根据题意易得,,
二面角的平面角为,
,,且,
平面,又平面,
平面平面,
在平面内的射影为,
直线与平面所成角为,
过作垂直所在直线,垂足点为,
设等腰直角三角形的斜边长为2,
则可易得,,又,
,,,
.
故选:.
7.(2022•浙江)如图,已知正三棱柱,,,分别是棱,上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则
A.B.C.D.
【答案】
【解析】正三棱柱中,,
正三棱柱的所有棱长相等,设棱长为1,
如图,过作,垂足点为,连接,则,
与所成的角为,且,
又,,,,
与平面所成的角为,且,,
,①,
再过点作,垂足点为,连接,
又易知底面,底面,
,又,平面,
二面角的平面角为,且,又,,
,,,②,
又,,③,
由①②③得,又,,,,在,单调递增,
,
故选:.
8.(2022•甲卷)在长方体中,已知与平面和平面所成的角均为,则
A.
B.与平面所成的角为
C.
D.与平面所成的角为
【答案】
【解析】如图所示,连接,,不妨令,
在长方体中,面,面,
所以和分别为与平面和平面所成的角,
即,
所以在中,,,
在中,,,
所以,,,
故选项,错误,
由图易知,在平面上的射影在上,
所以为与平面所成的角,
在中,,
故选项错误,
如图,连接,
则在平面上的射影为,
所以为与平面所成的角,
在△中,,所以,
所以选项正确,
故选:.
9.(2022•浙江)某几何体的三视图如图所示(单位:,则该几何体的体积(单位:是
A.B.C.D.
【答案】
【解析】由三视图可知几何体是上部为半球,中部是圆柱,下部是圆台,
所以几何体的体积为:.
故选:.
10.(2022•北京)已知正三棱锥的六条棱长均为6,是及其内部的点构成的集合.设集合,则表示的区域的面积为
A.B.C.D.
【答案】
【解析】设点在面内的投影为点,连接,则,
所以,
由,知表示的区域是以为圆心,1为半径的圆,
所以其面积.
故选:.
11.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是
A.,B.,C.,D.,
【答案】
【解析】如图所示,正四棱锥各顶点都在同一球面上,连接与交于点,连接,则球心在直线上,连接,
设正四棱锥的底面边长为,高为,
在中,,即,
球的体积为,球的半径,
在中,,即,
,,
,又,,
该正四棱锥体积,
,
当时,,单调递增;当时,,单调递减,
(4),
又,,且,
,
即该正四棱锥体积的取值范围是,,
故选:.
12.(2022•乙卷)已知球的半径为1,四棱锥的顶点为,底面的四个顶点均在球的球面上,则当该四棱锥的体积最大时,其高为
A.B.C.D.
【答案】
【解析】对于圆内接四边形,如图所示,
,
当且仅当,为圆的直径,且时,等号成立,此时四边形为正方形,
当该四棱锥的体积最大时,底面一定为正方形,设底面边长为,底面所在圆的半径为,
则,
该四棱锥的高,
该四棱锥的体积,
当且仅当,即时,等号成立,
该四棱锥的体积最大时,其高,
故选:.
13.(2022•甲卷)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为
A.8B.12C.16D.20
【答案】
【解析】由多面体的三视图得该多面体是一正四棱柱,
四棱柱的底面是直角梯形,如图,
,,,平面,
该多面体的体积为:
.
故选:.
14.(2022•乙卷)在正方体中,,分别为,的中点,则
A.平面平面B.平面平面
C.平面平面D.平面平面
【答案】
【解析】对于,由于,分别为,的中点,则,
又,,,且,平面,
平面,则平面,
又平面,
平面平面,选项正确;
对于,由选项可知,平面平面,而平面平面,在该正方体中,试想运动至时,平面不可能与平面垂直,选项错误;
对于,在平面上,易知与必相交,故平面与平面不平行,选项错误;
对于,易知平面平面,而平面与平面有公共点,故平面与平面不可能平行,选项错误.
故选:.
15.(2022•甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则
A.B.C.D.
【答案】
【解析】如图,
甲,乙两个圆锥的侧面展开图刚好拼成一个圆,设圆的半径(即圆锥母线)为3,甲、乙两个圆锥的底面半径分别为,,高分别为,,
则,,解得,,
由勾股定理可得,
.
故选:.
16.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为
A.B.C.D.
【答案】
【解析】当球心在台体外时,由题意得,上底面所在平面截球所得圆的半径为,下底面所在平面截球所得圆的半径为,如图,
设球的半径为,则轴截面中由几何知识可得,解得,
该球的表面积为.
当球心在台体内时,如图,
此时,无解.
综上,该球的表面积为.
故选:.
17.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为
A.B.C.D.
【答案】
【解析】,,
根据题意,增加的水量约为
.故选:.
二.多选题
18.(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:的正方体容器(容器壁厚度忽略不计)内的有
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
【答案】
【解析】对于,棱长为1的正方体内切球的直径为,选项正确;
对于,如图,
正方体内部最大的正四面体的棱长为,选项正确;
对于,棱长为1的正方体的体对角线为,选项错误;
对于,如图,六边形为正六边形,,,,,,为棱的中点,
高为0.01米可忽略不计,看作直径为1.2米的平面圆,
六边形棱长为米,,
所以米,故六边形内切圆半径为米,
而,选项正确.
故选:.
19.(2023•新高考Ⅱ)已知圆锥的顶点为,底面圆心为,为底面直径,,,点在底面圆周上,且二面角为,则
A.该圆锥的体积为B.该圆锥的侧面积为
C.D.的面积为
【答案】
【解析】取中点,则,,
由二面角的定义可知,二面角的平面角即为,
对于,中,由于,,
则,,
则,,选项正确.
对于,,选项错误.
对于,,选项正确.
对于,,,选项错误.
故选:.
20.(2022•新高考Ⅰ)已知正方体,则
A.直线与所成的角为
B.直线与所成的角为
C.直线与平面所成的角为
D.直线与平面所成的角为
【答案】
【解析】如图,
连接,由,,得四边形为平行四边形,
可得,,直线与所成的角为,故正确;
,,,平面,而平面,
,即直线与所成的角为,故正确;
设,连接,可得平面,即为直线与平面所成的角,
,直线与平面所成的角为,故错误;
底面,为直线与平面所成的角为,故正确.
故选:.
21.(2022•新高考Ⅱ)如图,四边形为正方形,平面,,.记三棱锥,,的体积分别为,,,则
A.B.C.D.
【答案】
【解析】设,
,
,
如图所示,
连接交于点,连接、,
则,,,
故,
,
故、正确,、错误.
故选:.
三.填空题
22.(2023•上海)空间中有三个点、、,且,在空间中任取2个不同的点,使得它们与、、恰好成为一个正四棱锥的五个顶点,则不同的取法有 种.
【答案】2.
【解析】如图所示,设任取2个不同的点为、,
当为正四棱锥的侧面时,如图,平面的两侧分别可以做作为圆锥的底面,有2种情况,
同理以、为底面各有2种情况,所以共有6种情况;
当为正四棱锥的截面时,如图,、位于两侧,为圆锥的底面,只有一种情况,
同理以、为为底面各有1种情况,所以共有3种情况;
综上,共有种情况.
故答案为:9.
23.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .如图所示,根据题意易知△,
,又,
,,又上下底面正方形边长分别为2,4,
所得棱台的体积为.
故答案为:28.
24.(2023•新高考Ⅰ)在正四棱台中,,,,则该棱台的体积为 .如图,设正四棱台的上下底面中心分别为,,
过作,垂足点为,由题意易知,又,
,又,,
该四棱台的体积为.
故答案为:.
25.(2023•乙卷)已知点,,,均在半径为2的球面上,是边长为3的等边三角形,平面,则 .
【答案】2.
【解析】设的外接圆圆心为,半径为,
则,解得,
设三棱锥的外接球球心为,连接,,
则,,
,,解得.
故答案为:2.
26.(2022•上海)已知圆柱的高为4,底面积为,则圆柱的侧面积为 .
【答案】.
【解析】因为圆柱的底面积为,即,
所以,
所以.
故答案为:.
四.解答题
27.(2023•乙卷)如图,在三棱锥中,,,,,,,,的中点分别为,,,点在上,.
(1)证明:平面;
(2)证明:平面平面;
(3)求二面角的正弦值.
【解析】证明:(1)由题可知,,设,
,
则,解得,
,,
而,,,,四边形为平行四边形,
,
平面,平面,
平面.
证明:(2),,
,即,,
,,
平面,
平面,
平面平面.
(3)设二面角的平面角为,
,,
为和的夹角,
,,
,
,
二面角的正弦值为.
28.(2023•上海)已知直四棱柱,,,,,.
(1)证明:直线平面;
(2)若该四棱柱的体积为36,求二面角的大小.
【解析】(1)证明:根据题意可知,,且,
可得平面平面,又直线平面,
直线平面;
(2)设,则根据题意可得该四棱柱的体积为,
,底面,在底面内过作,垂足点为,
则在底面内的射影为,
根据三垂线定理可得,
故即为所求,
在中,,,,
,又,
,
二面角的大小为.
29.(2023•甲卷)在三棱柱ABC﹣A1B1C1中,AA1=2,A1C⊥底面ABC,∠ACB=90°,A1到平面BCC1B1的距离为1.
(1)求证:AC=A1C;
(2)若直线AA1与BB1距离为2,求AB1与平面BCC1B1所成角的正弦值.
【解析】(1)证明:取CC1的中点,连接A1O,
∵A1C⊥底面ABC,AC⊂底面ABC,
∴A1C⊥AC,∴A1C⊥A1C1,∴A1O=
C1C=1,
∵A1C⊥底面ABC,BC⊂底面ABC,
∴A1C⊥BC,∵∠ACB=90°,∴AC⊥BC,
∵A1C∩AC=C,∴BC⊥平面A1C1CA,
∵BC⊂平面BCC1B1,∴平面BCC1B1⊥平面A1C1CA,
∵A1到平面BCC1B1的距离为1,
∴A1到CC1的距离为1,
∴A1O⊥CC1,
∴AC=A1C;
(2)过A作AM∥A1O交C1C的延长线与M,连接MB1,
取BB1的中点N,连接ON,
∴四边形BCON为平行四边形,
∴ON⊥平面A1C1CA,
A1O∩ON=O,∴CC1⊥平面A1ON,
∵A1N⊂平面A1ON,
∴CC1⊥A1N,
∴AA1⊥A1N,
∴A1N为直线AA1与BB1距离,
∴A1N=2,∴ON=
,
由(1)可知AM⊥平面BCC1B1,
∴∠AB1M为AB1与平面BCC1B1所成角的角,
易求得C1M=3,
∴B1M=
=2
,
∵A1M=1,∴A1B=
=
,
∴sin∠AB1M=
=
.
∴AB1与平面BCC1B1所成角的正弦值为
.
30.(2023•天津)如图,已知平面,,,,,分别为,中点.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成角的余弦值;
(Ⅲ)求点到平面的距离.
【解析】(Ⅰ)证明:连接,可得为△的中位线,
可得,且,
而,,
则,,
可得四边形为平行四边形,
则,
而平面,平面,
所以平面;
(Ⅱ)取的中点,连接,
由,,可得.
由平面,平面,
可得,
可得平面.
过作,垂足为,连接,
由三垂线定理可得,
可得为平面与平面所成角.
由.
在矩形中,,
所以;
(Ⅲ)设到平面的距离为.
在△中,,,,
则.
由,可得,
解得.
31.(2023•新高考Ⅱ)如图,三棱锥中,,,,为中点.
(1)证明;
(2)点满足,求二面角的正弦值.
【分析】
(1)根据已知条件,推得,,再结合线面垂直的判定定理,即可求证.
(2)根据已知条件,推得平面,依次求出两个平面的法向量,再结合向量的夹角公式,即可求解.
【详解】
证明:(1)连接,,
,为中点.
,
又,,
与 均为等边三角形,
,
,,
平面,
平面,
.
(2)设,
,
,,
,
,
又,,
平面,
以为原点,建立如图所示空间直角坐标系,
,,,,0,,
,
,
,,,
设平面与平面的一个法向量分别为,,
则,令,解得,
,令,解得,,
故,1,,,1,,
设二面角的平面角为,
则,
故,
所以二面角的正弦值为.
32.(2023•新高考Ⅰ)如图,在正四棱柱中,,.点,,,分别在棱,,,上,,,.
(1)证明:;
(2)点在棱上,当二面角为时,求.
【分析】
(1)建系,根据坐标法及向量共线定理,即可证明;
(2)建系,根据向量法,向量夹角公式,方程思想,即可求解.
【详解】
(1)证明:根据题意建系如图,则有:
,2,,,0,,,2,,,0,,
,,
,又,,,四点不共线,
;
(2)在(1)的坐标系下,可设,2,,,,
又由(1)知,0,,,2,,,0,,
,,,
设平面的法向量为,
则,取,
设平面的法向量为,
则,取,
根据题意可得,,
,
,又,,
解得或,
为的中点或的中点,
.
33.(2022•天津)直三棱柱中,,,,为中点,为中点,为中点.
(1)求证:平面;
(2)求直线与平面的正弦值;
(3)求平面与平面夹角的余弦值.
【解析】(1)证明:取的中点,连接,,连接交于,
再连接,
,且是的中点,则是的中点,
,,
又平面,平面,
平面,
同理可得,平面,
又,
平面平面,
平面,
(2)在直三棱柱中,,则可建立如图所示的空间直角坐标系,
又,为中点,为中点,为中点.
故,2,,,0,,,0,,,0,,,1,,
则,,,,0,,,1,,
设,,是平面的法向量,则有:,,即,令,则,,
所以,
设直线与平面的夹角为,则,
(3),0,,则,0,,,1,,
设平面的法向量为,,,则有,,
即,令,则,,故,
设平面与平面的夹角为,
所以.
34.(2022•浙江)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设,分别为,的中点.
(Ⅰ)证明:;
(Ⅱ)求直线与平面所成角的正弦值.
【解析】证明:由于,,
平面平面,平面,平面,
所以为二面角的平面角,
则,平面,则.
又,
则是等边三角形,则,
因为,,,平面,平面,
所以平面,因为平面,所以,
又因为,平面,平面,
所以平面,因为平面,故;
(Ⅱ)由于平面,如图建系:
于是,则,
,
设平面的法向量,,,
则,,令,则,,
平面的法向量,
设与平面所成角为,
则.
35.(2022•甲卷)在四棱锥中,底面,,,,.
(1)证明:;
(2)求与平面所成的角的正弦值.
【解析】(1)证明:底面,面,
,
取中点,连接,
,,
,又,
,,
为直角三角形,且为斜边,
,
又,面,面,
面,
又面,
;
(2)由(1)知,,,两两互相垂直,故建立如图所示的空间直角坐标系,
,
则,
,
设平面的一个法向量为,则,则可取,
设与平面所成的角为,则,
与平面所成的角的正弦值为.
36.(2022•北京)如图,在三棱柱中,侧面为正方形,平面平面,,,分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)再从条件①、条件②这两个条件中选择一个作为已知,求直线与平面所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
【解析】证明:取中点,连接,,
为的中点.,且,
四边形是平行四边形,故,
平面;平面,
平面,
是中点,是的点,
,平面;平面,
平面,又,
平面平面,
又平面,平面;
侧面为正方形,平面平面,平面平面,
平面,,又,,
若选①:;又,平面,
又平面,,又,
,,,两两垂直,
若选②:平面,,平面,平面,
,又,,,
,,
,又,,
,,两两垂直,
以为坐标原点,,,为坐标轴建立如图所示的空间直角坐标系,
则,0,,,1,,,1,,,2,,
,1,,,1,,
设平面的一个法向量为,,,
则,令,则,,
平面的一个法向量为,,,
又,2,,
设直线与平面所成角为,
,.
直线与平面所成角的正弦值为.
37.(2022•新高考Ⅱ)如图,是三棱锥的高,,,为的中点.
(1)证明:平面;
(2)若,,,求二面角的正弦值.
【解析】(1)证明:连接,,依题意,平面,
又平面,平面,则,,
,
又,,则,
,
延长交于点,又,则在中,为中点,连接,
在中,,分别为,的中点,则,
平面,平面,
平面;
(2)过点作,以,,分别为轴,轴,轴建立如图所示的空间直角坐标系,
由于,,由(1)知,
又,则,
,
又,即,12,,
设平面的一个法向量为,又,
则,则可取,
设平面的一个法向量为,又,
则,则可取,
设锐二面角的平面角为,则,
,即二面角正弦值为.
38.(2022•新高考Ⅰ)如图,直三棱柱的体积为4,△的面积为.
(1)求到平面的距离;
(2)设为的中点,,平面平面,求二面角的正弦值.
【解析】(1)由直三棱柱的体积为4,可得,
设到平面的距离为,由,
,,解得.
(2)连接交于点,,四边形为正方形,
,又平面平面,平面平面,
平面,,
由直三棱柱知平面,,又,
平面,,
以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,
,,又,解得,
则,0,,,2,,,0,,,2,,,1,,
则,2,,,1,,,0,,
设平面的一个法向量为,,,
则,令,则,,
平面的一个法向量为,0,,
设平面的一个法向量为,,,
,令,则,,
平面的一个法向量为,1,,
,,
二面角的正弦值为.
39.(2022•乙卷)如图,四面体中,,,,为的中点.
(1)证明:平面平面;
(2)设,,点在上,当的面积最小时,求与平面所成的角的正弦值.
【解析】(1)证明:,为的中点.,
又,,,,
,又为的中点.,又,平面,平面,
平面,又平面,平面平面;
(2)连接,由(1)知,,
故最小时,的面积最小,时,的面积最小,
又平面,平面,,又,平面,平面,
平面,又平面,平面平面,
过作于点,则平面,
故,即为直线与平面所成的角,
由,,知是2为边长的等边三角形,
故,由已知可得,,又,,
,所以,
,,
在中,由余弦定理得,
.
故与平面所成的角的正弦值为.
40.(2022•上海)如图所示三棱锥,底面为等边,为边中点,且底面,.
(1)求三棱锥体积;
(2)若为中点,求与面所成角大小.
【解析】(1)在三棱锥中,因为底面,所以,
又为边中点,所以为等腰三角形,
又.所以是边长为2的为等边三角形,
,三棱锥体积,
(2)以为坐标原点,为轴,为轴,为轴,建立空间直角坐标系,
则,0,,,0,,,1,,,,,
,,,
平面的法向量,0,,
设直线与平面所成角为,
则直线与平面所成角的正弦值为,
所以与面所成角大小为.
新高考数学第一轮复习讲义命题方向全归类(新高考专用)第8讲计数原理与概率统计(2022-2023年高考真题)(原卷版+解析): 这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第8讲计数原理与概率统计(2022-2023年高考真题)(原卷版+解析),共31页。试卷主要包含了若,则等内容,欢迎下载使用。
新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析): 这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析),共45页。试卷主要包含了已知实数,满足,则的最大值是,双曲线的左、右焦点分别为,,设椭圆,的离心率分别为,等内容,欢迎下载使用。
新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析): 这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析),共22页。试卷主要包含了若,,,则,若,满足约束条件则的最大值是,记为等差数列的前项和,记为等比数列的前项和,若,,则,若,满足,则等内容,欢迎下载使用。