还剩12页未读,
继续阅读
鲁科版高中物理选择性必修第一册第1章动量及其守恒定律第3节科学验证:动量守恒定律练习含答案
展开
这是一份鲁科版高中物理选择性必修第一册第1章动量及其守恒定律第3节科学验证:动量守恒定律练习含答案,共15页。
第1章 动量及其守恒定律第3节 科学验证:动量守恒定律基础过关练题组一 研究斜槽末端小球碰撞时的动量守恒1.(2023山东师范大学附中期中)如图所示,用碰撞实验器可以验证动量守恒定律,即研究两个小球在斜槽末端碰撞前后的动量关系。安装好实验装置,完成测量前的准备,并记下重垂线所指的位置O。第一步:不放小球2,让小球1从斜槽上某处由静止滚下,并落在地面上,重复多次,用尽可能小的圆把小球1的所有落点圈在里面,其圆心就是小球1落点的平均位置。第二步:把小球2放在斜槽末端边缘处,让小球1从斜槽上相同位置处由静止滚下,使小球1与小球2碰撞,重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置。第三步:用刻度尺分别测量三个落点的平均位置离O点的距离,即线段OM、OP、ON的长度。在上述实验中:(1)在不放小球2时,小球1从斜槽上某处由静止开始滚下,小球1的落点的平均位置在图中的 点;把小球2放在斜槽末端边缘处,小球1从斜槽上相同位置处由静止开始滚下,使它们发生碰撞,碰后小球1的落点的平均位置在图中的 点。(选填“M”“P”或“N”) (2)直接测定小球碰撞前后的速度是不容易的,可以通过测量 间接地解决这个问题。 A.小球开始释放时距斜槽底端的高度hB.小球抛出点距地面的高度HC.小球做平抛运动的水平位移(3)本实验中小球1的质量m1与小球2的质量m2应满足m1 m2(选填“>”“<”或“=”)。 2.(2024福建厦门第二中学月考)如图1所示为某实验小组验证碰撞中动量守恒的实验装置。安装好实验装置后,在地上铺一张记录纸,记下重垂线所指的位置O,先不放靶球,让入射球从斜槽上由静止滚下,并落在地面上,再将靶球放在斜槽前端边缘位置,让入射球从斜槽上滚下,使它们碰撞,重复多次,分别测量三个落地点的平均位置M、P、N离O点的距离,分别为x1、x2、x3。(1)下列关于本实验的说法正确的是 。 A.入射球比靶球质量大或小均可,但两球的直径必须相同B.在同一组实验的不同碰撞中,每次入射球必须从同一位置由静止释放C.安装轨道时斜槽的末端必须水平D.本实验中由于斜槽轨道不光滑会造成误差,所造成的误差属于系统误差(2)若入射小球和靶球的质量分别为m1和m2,本实验中需要验证两球碰撞中动量守恒的表达式为 。(用所测物理量的符号表示) (3)完成上述实验后,实验小组的成员对上述装置进行了改造,小红改造后的装置如图2所示。使入射球仍从斜槽上由静止滚下,重复实验步骤中的操作,使两球落在以斜槽末端为最高点的斜面上,平均落点为M″、P″、N″。测得M″、P″、N″到斜槽末端距离分别为L1、L2、L3,则小红需要验证两球碰撞过程中动量守恒的表达式为 (用所测物理量的符号表示)。 题组二 用气垫导轨验证动量守恒定律3.(2024福建宁德期末)如图甲所示为验证动量守恒定律的实验装置示意图,两个质量分别为mA、mB的滑块A、B上固定有宽度为d的遮光条,在A、B间锁定一压缩的轻弹簧,将其置于气垫导轨上。接通充气开关,解除弹簧锁定,弹簧将两滑块沿相反方向弹开,光电门C、D记录下两遮光条通过的时间分别为t1和t2。 (1)在实验中用螺旋测微器测量遮光条的宽度,由图乙可读出遮光条的宽度d= mm。 (2)调节导轨水平后进行实验,验证动量守恒定律的关系式是 。(用题中各物理量的符号表示) 4.(2022福建福州格致中学期中)某同学利用打点计时器和气垫导轨做验证动量守恒定律的实验。气垫导轨装置如图甲所示,由导轨、滑块、弹射架等组成。在导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,如图乙所示,这样就大大减小了因滑块和导轨之间的摩擦引起的误差。甲乙丙丁下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平。②向气垫导轨通入压缩空气。③把打点计时器(图中未画出)固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器越过弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向。④使滑块1挤压导轨左端弹射架上的橡皮绳。⑤把滑块2(所用滑块1、2如图丙所示)放在气垫导轨的中间。⑥先 ,然后 ,让滑块带动纸带一起运动。 ⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图丁所示。⑧用天平测得滑块1(包括撞针)的质量为310 g,滑块2(包括橡皮泥)的质量为205 g。(1)试补全实验步骤⑥的内容。(2)已知打点计时器每隔0.02 s打一个点,试计算两滑块相互作用前系统的总动量为 kg·m/s,两滑块相互作用后系统的总动量为 kg·m/s。(保留3位有效数字) (3)试说明(2)问中两结果不完全相同的主要原因是 。 能力提升练 题组一 常规实验:验证动量守恒定律1.(2024福建福州第一中学等八校联考)为了验证碰撞中的动量守恒,某同学选取两个体积相同、质量不等的小球,按下述步骤做实验:①按照如图所示安装好实验装置,将斜槽AB固定在桌边,使槽的末端水平,将一长为L的斜面固定在斜槽右侧,O点在B点正下方,P点与B点等高;②用天平测出小球甲、乙的质量分别为m1和m2;③先不放小球乙,让小球甲从斜槽顶端A点处由静止开始滚下,记下小球甲在斜面上的落点位置;④将小球乙放在斜槽末端B处,让小球甲从斜槽顶端A处由静止滚下,使它们发生碰撞,记下小球甲和小球乙在斜面上的落点位置;⑤用毫米刻度尺量出各个落点位置到O点的距离,图中C、D、E点是该同学记下的小球在斜面上的落点位置,到O点的距离分别为LC、LD、LE。(1)小球的质量关系应为m1 m2(填“>”“=”或“<”)。 (2)小球甲与乙发生碰撞后,小球甲的落点应是图中的 点。 (3)用测得的物理量来表示,只要满足关系式 ,则说明碰撞中动量是守恒的。 题组二 创新实验:验证动量守恒定律2.(2024福建漳州立人学校月考)某学习小组利用如图甲所示的装置验证动量守恒定律。操作如下:①将小球P用轻质细线悬挂于O点,测出小球P的直径D、摆线长L(L≫D);②将与小球P相同大小的小球Q放在离地面高度为H的水平桌面边缘;③将小球P拉至悬线与竖直方向夹角为α处,由静止释放,摆到最低点时恰与小球Q发生碰撞,碰撞后小球P把轻质指示针(图中未画出)推移到与竖直线夹角为β处,小球Q水平抛出后落到地面上,测出小球Q的水平位移s。(1)用螺旋测微器测量小球P的直径如图乙所示,其直径D= mm。 (2)已知当地的重力加速度大小为g,碰后小球Q的速度大小vQ= 。(用s、g、H表示) (3)多次实验,学习小组发现该碰撞过程中不仅动量守恒,机械能也守恒。若mP=3mQ,作出cos β-cos α的关系图线,则该直线斜率的理论值应为 。 3.(2024湖北襄阳第三中学期末)“阿特伍德机”是英国数学家和物理学家阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律。某同学对该装置加以改进后用来验证机械能守恒定律和动量守恒定律,如图甲所示。已知当地重力加速度为g,空气阻力不计。甲(1)实验时,该同学用游标卡尺测量挡光片的宽度d,如图乙所示,则d= cm。然后将质量均为M(A的含挡光片)的重物A、B用绳连接后,跨放在定滑轮上,处于静止状态,测量出 (选填“A的上表面”“A的下表面”或“挡光片中心”)到光电门中心的竖直距离h。 乙(2)为了验证动量守恒定律,该同学让A在水平桌面上处于静止状态,将B从原静止位置竖直抬高H后由静止释放,直到光电门记录下挡光片挡光的时间为t2(重物B未接触桌面),则验证绳绷紧过程中系统沿绳方向动量守恒的表达式为 。 4.(2024山东日照月考)某同学为了验证对心碰撞过程中的动量守恒,设计了如下实验:用纸板搭建如图所示的滑道,使硬币可以平滑地从斜面滑到水平面上,其中AB为水平段,在水平段取一点O。选择相同材质的一元硬币和一角硬币进行实验。测量硬币的质量,得到一元硬币和一角硬币的质量分别为m1和m2(m1>m2)。将硬币a放置在斜面上某一位置,标记此位置为C。由静止释放a,当a停在水平面上某处时,测量a右侧到O点的距离OP,如图甲所示;将硬币b放置在O处,左侧与O点重合,再将a从C点由静止释放,当两枚硬币发生碰撞后,a、b分别停在水平面上时,测量a右侧到O点的距离OM、b左侧到O点的距离ON,如图乙所示。保持释放位置不变,重复实验若干次,得到OP、OM、ON的平均值分别为s0、s1、s2。(1)在本实验中,b选用的是 硬币。(选填“一元”或“一角”) (2)若a、b碰撞前后动量守恒,则应满足的表达式为 (用s0、s1、s2、m1和m2表示);若碰撞前后动量守恒且机械能相等,则应满足的表达式为 (用s0、s1和s2表示)。 (3)该同学规范地完成了实验的每一步操作,最后代入实验测得的数据,发现碰撞前后动量并不守恒,原因可能是 (回答一条即可)。 答案全解全析基础过关练1.答案 (1)P M (2)C (3)>解析 (1)小球1从斜槽上某处由静止开始滚下,小球1的落点的平均位置在图中的P点;小球1和小球2相撞后,小球1的速度变小,小球2的速度大于小球1的速度,两小球都做平抛运动,故小球2的水平位移较大,所以碰撞后小球1落点的平均位置是M点,小球2落点的平均位置是N点。(2)根据平抛运动规律有x=vt,H=12gt2联立可得小球做平抛运动的初速度v=xg2H因抛出点到地面的高度相同,故测定小球碰撞前后的速度可以通过测量小球做平抛运动的水平位移x间接地解决这个问题,C正确。(3)为避免碰撞后小球1发生反弹,实验中小球1与小球2的质量关系应满足m1>m2。2.答案 (1)BC (2)m1x2=m1x1+m2x3(3)m1L2=m1L1+m2L3解析 (1)为使入射球与靶球发生对心碰撞,两球的直径必须相同;为防止碰撞后入射球反弹,入射球的质量应大于靶球的质量,A错误。为保证碰撞前瞬间入射球的速度相同,每次入射球必须从同一位置由静止释放,B正确。为保证碰撞后两个球做平抛运动,斜槽轨道末端必须水平,C正确。轨道是否光滑对实验的结果没有影响,D错误。(2)碰撞前后入射球和靶球做平抛运动的竖直位移相同,则在空中运动的时间相同;设在空中运动的时间为t,若满足动量守恒,有m1x2t=m1x1t+m2x3t,整理可得m1x2=m1x1+m2x3。(3)设斜面与水平面的夹角为θ,由几何关系可得x″=L cos θ,h″=L sin θ;由平抛运动的规律得x″=v″0t″,h″=12gt″2;联立可得v″0= cos θgL2sinθ,则做平抛运动的水平速度分别为v″1= cos θgL12sinθ,v″2= cos θgL22sinθ,v″3=cos θgL32sinθ,代入动量守恒的表达式m1v″2=m1v″1+m2v″3,化简可得m1L2=m1L1+m2L3。3.答案 (1)5.325(5.324~5.326均可) (2)mAt1=mBt2解析 (1)由题图乙可知遮光条的宽度为d=5 mm+32.5×0.01 mm=5.325 mm。(2)设弹簧将A、B两滑块沿相反方向弹开后,两滑块的速度大小分别为v1和v2,根据动量守恒定律可得mAv1=mBv2,又v1=dt1,v2=dt2联立可得验证动量守恒定律的关系式为mAt1=mBt2。4.答案 (1)接通电源 放开滑块 (2)0.620 0.618(3)纸带与打点计时器限位孔之间有摩擦解析 (1)使用打点计时器时,应先接通电源,待打点计时器工作稳定后,再放开滑块。(2)由纸带上打出的点迹可知两滑块相互作用前滑块1的速度v1=20.0×10−20.02×5 m/s=2 m/s。系统的总动量p1=m1v1=0.310×2 kg·m/s=0.620 kg·m/s相互作用后,两滑块的速度v2=16.8×10−20.02×7 m/s=1.2 m/s。系统的总动量p2=(m1+m2)v2=(310+205)×10-3×1.2 kg·m/s=0.618 kg·m/s。(3)系统相互作用前后的总动量不完全相同的主要原因是纸带与打点计时器的限位孔之间有摩擦。能力提升练1.答案 (1)> (2)C(3)m1LD1L−LD=m1LC1L−LC+m2LE1L−LE解析 (1)为了防止入射球碰后反弹,小球甲、乙的质量关系应满足m1>m2。(2)小球甲与乙发生碰撞后,小球甲的速度减小,因此碰撞后小球甲的落点应低于未碰撞时小球甲的落点,故碰撞后小球甲的落点只能是C点或D点。若碰撞后小球甲的落点是D点,则未碰撞时小球甲的落点是E点,则C点是碰撞后小球乙的落点,这与碰撞后小球甲在小球乙的后面、小球甲的速度小于小球乙的速度的实际情况不符,故碰撞后小球甲的落点应是图中的C点。(3)设落点所对应的水平速度分别为vC、vD、vE,若碰撞过程中动量守恒,则m1vD=m1vC+m2vE设斜面与水平面的夹角为θ,则小球甲落到C点的下落高度为hC=(L-LC) sin θ小球甲下落到C点所用的时间为tC=2ℎCg=2(L−LC)sinθg小球甲下落到C点的水平位移为xC=LC cos θ故vC=xCtC=LC cos θ·g2(L−LC)sinθ同理可得vD=LD cos θ·g2(L−LD)sinθ,vE=LE cos θ·g2(L−LE)sinθ代入动量守恒表达式整理可得m1LD1L−LD=m1LC1L−LC+m2LE1L−LE即满足上式则说明碰撞中动量是守恒的。2.答案 (1)9.303(9.302~9.304均可) (2)sg2H(3)14解析 (1)小球P的直径为D=9 mm+30.3×0.01 mm=9.303 mm。(2)碰后小球Q做平抛运动,竖直方向有H=12gt2水平方向有s=vQt联立解得碰后小球Q的速度大小为vQ=sg2H。(3)小球P运动到最低点与小球Q碰撞前,根据动能定理可得mPgL(1-cos α)=12mPvP2解得vP=2gL(1−cosα)同理可得小球P与小球Q碰撞后的速度大小为vP'=2gL(1−cosβ)该碰撞过程中动量守恒,有mPvP+0=mPvP'+mQvQ机械能守恒,有12mPvP2+0=12mPvP'2+12mQvQ2联立解得vP'=mP−mQmP+mQvP=12vP整理可得cos β=14 cos α+34则cos β-cos α图线斜率的理论值应为14。3.答案 (1)0.420 挡光片中心 (2)2gH=2dt2解析 (1)游标卡尺主尺的读数为0.4 cm,游标尺读数为10×0.02 mm=0.20 mm,则d=0.4 cm+0.20 mm=0.420 cm;需测量出挡光片中心到光电门中心的竖直距离h。(2)重物A经过光电门时的速度v'=dt2,绳绷紧前,对B由机械能守恒定律可得MgH=12Mv2,解得v=2gH,则可知A、B作用前系统的总动量为p=Mv=M2gH;绳绷紧后A、B做匀速运动的速度大小相等,为v'=dt2,故A、B作用后的总动量p'=2Mv'=2Mdt2,故只要验证2gH=2dt2即可证明系统沿绳方向动量守恒。4.答案 (1)一角 (2)m1s0=m1s1+m2s2 s0=s2−s1 (3)见解析解析 (1)为了保证两硬币碰后都向右运动,需要入射硬币的质量大于被碰硬币的质量,故b选用的是一角硬币。(2)不放置硬币乙时,甲从O点到P点做匀减速直线运动,由牛顿第二定律得-μm1g=m1a由匀变速直线运动的速度-位移公式得0-v02=2as0联立解得v0=2μgs0同理,碰后两硬币的速度分别为v1=2μgs1,v2=2μgs2以碰撞前瞬间a的速度方向为正方向,a、b碰撞过程,由动量守恒定律得m1v0=m1v1+m2v2,整理得m1s0=m1s1+m2s2若碰撞前后动量守恒且机械能相等,则有12m1v02=12m1v12+12m2v22联立解得s0=s2−s1(3)产生误差可能的原因是:①两个硬币厚度不同,两硬币重心连线与水平面不平行;②两硬币碰撞内力不远远大于外力,只是近似满足动量守恒(即如果摩擦力比较大,只是近似满足动量守恒)。
第1章 动量及其守恒定律第3节 科学验证:动量守恒定律基础过关练题组一 研究斜槽末端小球碰撞时的动量守恒1.(2023山东师范大学附中期中)如图所示,用碰撞实验器可以验证动量守恒定律,即研究两个小球在斜槽末端碰撞前后的动量关系。安装好实验装置,完成测量前的准备,并记下重垂线所指的位置O。第一步:不放小球2,让小球1从斜槽上某处由静止滚下,并落在地面上,重复多次,用尽可能小的圆把小球1的所有落点圈在里面,其圆心就是小球1落点的平均位置。第二步:把小球2放在斜槽末端边缘处,让小球1从斜槽上相同位置处由静止滚下,使小球1与小球2碰撞,重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置。第三步:用刻度尺分别测量三个落点的平均位置离O点的距离,即线段OM、OP、ON的长度。在上述实验中:(1)在不放小球2时,小球1从斜槽上某处由静止开始滚下,小球1的落点的平均位置在图中的 点;把小球2放在斜槽末端边缘处,小球1从斜槽上相同位置处由静止开始滚下,使它们发生碰撞,碰后小球1的落点的平均位置在图中的 点。(选填“M”“P”或“N”) (2)直接测定小球碰撞前后的速度是不容易的,可以通过测量 间接地解决这个问题。 A.小球开始释放时距斜槽底端的高度hB.小球抛出点距地面的高度HC.小球做平抛运动的水平位移(3)本实验中小球1的质量m1与小球2的质量m2应满足m1 m2(选填“>”“<”或“=”)。 2.(2024福建厦门第二中学月考)如图1所示为某实验小组验证碰撞中动量守恒的实验装置。安装好实验装置后,在地上铺一张记录纸,记下重垂线所指的位置O,先不放靶球,让入射球从斜槽上由静止滚下,并落在地面上,再将靶球放在斜槽前端边缘位置,让入射球从斜槽上滚下,使它们碰撞,重复多次,分别测量三个落地点的平均位置M、P、N离O点的距离,分别为x1、x2、x3。(1)下列关于本实验的说法正确的是 。 A.入射球比靶球质量大或小均可,但两球的直径必须相同B.在同一组实验的不同碰撞中,每次入射球必须从同一位置由静止释放C.安装轨道时斜槽的末端必须水平D.本实验中由于斜槽轨道不光滑会造成误差,所造成的误差属于系统误差(2)若入射小球和靶球的质量分别为m1和m2,本实验中需要验证两球碰撞中动量守恒的表达式为 。(用所测物理量的符号表示) (3)完成上述实验后,实验小组的成员对上述装置进行了改造,小红改造后的装置如图2所示。使入射球仍从斜槽上由静止滚下,重复实验步骤中的操作,使两球落在以斜槽末端为最高点的斜面上,平均落点为M″、P″、N″。测得M″、P″、N″到斜槽末端距离分别为L1、L2、L3,则小红需要验证两球碰撞过程中动量守恒的表达式为 (用所测物理量的符号表示)。 题组二 用气垫导轨验证动量守恒定律3.(2024福建宁德期末)如图甲所示为验证动量守恒定律的实验装置示意图,两个质量分别为mA、mB的滑块A、B上固定有宽度为d的遮光条,在A、B间锁定一压缩的轻弹簧,将其置于气垫导轨上。接通充气开关,解除弹簧锁定,弹簧将两滑块沿相反方向弹开,光电门C、D记录下两遮光条通过的时间分别为t1和t2。 (1)在实验中用螺旋测微器测量遮光条的宽度,由图乙可读出遮光条的宽度d= mm。 (2)调节导轨水平后进行实验,验证动量守恒定律的关系式是 。(用题中各物理量的符号表示) 4.(2022福建福州格致中学期中)某同学利用打点计时器和气垫导轨做验证动量守恒定律的实验。气垫导轨装置如图甲所示,由导轨、滑块、弹射架等组成。在导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,如图乙所示,这样就大大减小了因滑块和导轨之间的摩擦引起的误差。甲乙丙丁下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平。②向气垫导轨通入压缩空气。③把打点计时器(图中未画出)固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器越过弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向。④使滑块1挤压导轨左端弹射架上的橡皮绳。⑤把滑块2(所用滑块1、2如图丙所示)放在气垫导轨的中间。⑥先 ,然后 ,让滑块带动纸带一起运动。 ⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图丁所示。⑧用天平测得滑块1(包括撞针)的质量为310 g,滑块2(包括橡皮泥)的质量为205 g。(1)试补全实验步骤⑥的内容。(2)已知打点计时器每隔0.02 s打一个点,试计算两滑块相互作用前系统的总动量为 kg·m/s,两滑块相互作用后系统的总动量为 kg·m/s。(保留3位有效数字) (3)试说明(2)问中两结果不完全相同的主要原因是 。 能力提升练 题组一 常规实验:验证动量守恒定律1.(2024福建福州第一中学等八校联考)为了验证碰撞中的动量守恒,某同学选取两个体积相同、质量不等的小球,按下述步骤做实验:①按照如图所示安装好实验装置,将斜槽AB固定在桌边,使槽的末端水平,将一长为L的斜面固定在斜槽右侧,O点在B点正下方,P点与B点等高;②用天平测出小球甲、乙的质量分别为m1和m2;③先不放小球乙,让小球甲从斜槽顶端A点处由静止开始滚下,记下小球甲在斜面上的落点位置;④将小球乙放在斜槽末端B处,让小球甲从斜槽顶端A处由静止滚下,使它们发生碰撞,记下小球甲和小球乙在斜面上的落点位置;⑤用毫米刻度尺量出各个落点位置到O点的距离,图中C、D、E点是该同学记下的小球在斜面上的落点位置,到O点的距离分别为LC、LD、LE。(1)小球的质量关系应为m1 m2(填“>”“=”或“<”)。 (2)小球甲与乙发生碰撞后,小球甲的落点应是图中的 点。 (3)用测得的物理量来表示,只要满足关系式 ,则说明碰撞中动量是守恒的。 题组二 创新实验:验证动量守恒定律2.(2024福建漳州立人学校月考)某学习小组利用如图甲所示的装置验证动量守恒定律。操作如下:①将小球P用轻质细线悬挂于O点,测出小球P的直径D、摆线长L(L≫D);②将与小球P相同大小的小球Q放在离地面高度为H的水平桌面边缘;③将小球P拉至悬线与竖直方向夹角为α处,由静止释放,摆到最低点时恰与小球Q发生碰撞,碰撞后小球P把轻质指示针(图中未画出)推移到与竖直线夹角为β处,小球Q水平抛出后落到地面上,测出小球Q的水平位移s。(1)用螺旋测微器测量小球P的直径如图乙所示,其直径D= mm。 (2)已知当地的重力加速度大小为g,碰后小球Q的速度大小vQ= 。(用s、g、H表示) (3)多次实验,学习小组发现该碰撞过程中不仅动量守恒,机械能也守恒。若mP=3mQ,作出cos β-cos α的关系图线,则该直线斜率的理论值应为 。 3.(2024湖北襄阳第三中学期末)“阿特伍德机”是英国数学家和物理学家阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律。某同学对该装置加以改进后用来验证机械能守恒定律和动量守恒定律,如图甲所示。已知当地重力加速度为g,空气阻力不计。甲(1)实验时,该同学用游标卡尺测量挡光片的宽度d,如图乙所示,则d= cm。然后将质量均为M(A的含挡光片)的重物A、B用绳连接后,跨放在定滑轮上,处于静止状态,测量出 (选填“A的上表面”“A的下表面”或“挡光片中心”)到光电门中心的竖直距离h。 乙(2)为了验证动量守恒定律,该同学让A在水平桌面上处于静止状态,将B从原静止位置竖直抬高H后由静止释放,直到光电门记录下挡光片挡光的时间为t2(重物B未接触桌面),则验证绳绷紧过程中系统沿绳方向动量守恒的表达式为 。 4.(2024山东日照月考)某同学为了验证对心碰撞过程中的动量守恒,设计了如下实验:用纸板搭建如图所示的滑道,使硬币可以平滑地从斜面滑到水平面上,其中AB为水平段,在水平段取一点O。选择相同材质的一元硬币和一角硬币进行实验。测量硬币的质量,得到一元硬币和一角硬币的质量分别为m1和m2(m1>m2)。将硬币a放置在斜面上某一位置,标记此位置为C。由静止释放a,当a停在水平面上某处时,测量a右侧到O点的距离OP,如图甲所示;将硬币b放置在O处,左侧与O点重合,再将a从C点由静止释放,当两枚硬币发生碰撞后,a、b分别停在水平面上时,测量a右侧到O点的距离OM、b左侧到O点的距离ON,如图乙所示。保持释放位置不变,重复实验若干次,得到OP、OM、ON的平均值分别为s0、s1、s2。(1)在本实验中,b选用的是 硬币。(选填“一元”或“一角”) (2)若a、b碰撞前后动量守恒,则应满足的表达式为 (用s0、s1、s2、m1和m2表示);若碰撞前后动量守恒且机械能相等,则应满足的表达式为 (用s0、s1和s2表示)。 (3)该同学规范地完成了实验的每一步操作,最后代入实验测得的数据,发现碰撞前后动量并不守恒,原因可能是 (回答一条即可)。 答案全解全析基础过关练1.答案 (1)P M (2)C (3)>解析 (1)小球1从斜槽上某处由静止开始滚下,小球1的落点的平均位置在图中的P点;小球1和小球2相撞后,小球1的速度变小,小球2的速度大于小球1的速度,两小球都做平抛运动,故小球2的水平位移较大,所以碰撞后小球1落点的平均位置是M点,小球2落点的平均位置是N点。(2)根据平抛运动规律有x=vt,H=12gt2联立可得小球做平抛运动的初速度v=xg2H因抛出点到地面的高度相同,故测定小球碰撞前后的速度可以通过测量小球做平抛运动的水平位移x间接地解决这个问题,C正确。(3)为避免碰撞后小球1发生反弹,实验中小球1与小球2的质量关系应满足m1>m2。2.答案 (1)BC (2)m1x2=m1x1+m2x3(3)m1L2=m1L1+m2L3解析 (1)为使入射球与靶球发生对心碰撞,两球的直径必须相同;为防止碰撞后入射球反弹,入射球的质量应大于靶球的质量,A错误。为保证碰撞前瞬间入射球的速度相同,每次入射球必须从同一位置由静止释放,B正确。为保证碰撞后两个球做平抛运动,斜槽轨道末端必须水平,C正确。轨道是否光滑对实验的结果没有影响,D错误。(2)碰撞前后入射球和靶球做平抛运动的竖直位移相同,则在空中运动的时间相同;设在空中运动的时间为t,若满足动量守恒,有m1x2t=m1x1t+m2x3t,整理可得m1x2=m1x1+m2x3。(3)设斜面与水平面的夹角为θ,由几何关系可得x″=L cos θ,h″=L sin θ;由平抛运动的规律得x″=v″0t″,h″=12gt″2;联立可得v″0= cos θgL2sinθ,则做平抛运动的水平速度分别为v″1= cos θgL12sinθ,v″2= cos θgL22sinθ,v″3=cos θgL32sinθ,代入动量守恒的表达式m1v″2=m1v″1+m2v″3,化简可得m1L2=m1L1+m2L3。3.答案 (1)5.325(5.324~5.326均可) (2)mAt1=mBt2解析 (1)由题图乙可知遮光条的宽度为d=5 mm+32.5×0.01 mm=5.325 mm。(2)设弹簧将A、B两滑块沿相反方向弹开后,两滑块的速度大小分别为v1和v2,根据动量守恒定律可得mAv1=mBv2,又v1=dt1,v2=dt2联立可得验证动量守恒定律的关系式为mAt1=mBt2。4.答案 (1)接通电源 放开滑块 (2)0.620 0.618(3)纸带与打点计时器限位孔之间有摩擦解析 (1)使用打点计时器时,应先接通电源,待打点计时器工作稳定后,再放开滑块。(2)由纸带上打出的点迹可知两滑块相互作用前滑块1的速度v1=20.0×10−20.02×5 m/s=2 m/s。系统的总动量p1=m1v1=0.310×2 kg·m/s=0.620 kg·m/s相互作用后,两滑块的速度v2=16.8×10−20.02×7 m/s=1.2 m/s。系统的总动量p2=(m1+m2)v2=(310+205)×10-3×1.2 kg·m/s=0.618 kg·m/s。(3)系统相互作用前后的总动量不完全相同的主要原因是纸带与打点计时器的限位孔之间有摩擦。能力提升练1.答案 (1)> (2)C(3)m1LD1L−LD=m1LC1L−LC+m2LE1L−LE解析 (1)为了防止入射球碰后反弹,小球甲、乙的质量关系应满足m1>m2。(2)小球甲与乙发生碰撞后,小球甲的速度减小,因此碰撞后小球甲的落点应低于未碰撞时小球甲的落点,故碰撞后小球甲的落点只能是C点或D点。若碰撞后小球甲的落点是D点,则未碰撞时小球甲的落点是E点,则C点是碰撞后小球乙的落点,这与碰撞后小球甲在小球乙的后面、小球甲的速度小于小球乙的速度的实际情况不符,故碰撞后小球甲的落点应是图中的C点。(3)设落点所对应的水平速度分别为vC、vD、vE,若碰撞过程中动量守恒,则m1vD=m1vC+m2vE设斜面与水平面的夹角为θ,则小球甲落到C点的下落高度为hC=(L-LC) sin θ小球甲下落到C点所用的时间为tC=2ℎCg=2(L−LC)sinθg小球甲下落到C点的水平位移为xC=LC cos θ故vC=xCtC=LC cos θ·g2(L−LC)sinθ同理可得vD=LD cos θ·g2(L−LD)sinθ,vE=LE cos θ·g2(L−LE)sinθ代入动量守恒表达式整理可得m1LD1L−LD=m1LC1L−LC+m2LE1L−LE即满足上式则说明碰撞中动量是守恒的。2.答案 (1)9.303(9.302~9.304均可) (2)sg2H(3)14解析 (1)小球P的直径为D=9 mm+30.3×0.01 mm=9.303 mm。(2)碰后小球Q做平抛运动,竖直方向有H=12gt2水平方向有s=vQt联立解得碰后小球Q的速度大小为vQ=sg2H。(3)小球P运动到最低点与小球Q碰撞前,根据动能定理可得mPgL(1-cos α)=12mPvP2解得vP=2gL(1−cosα)同理可得小球P与小球Q碰撞后的速度大小为vP'=2gL(1−cosβ)该碰撞过程中动量守恒,有mPvP+0=mPvP'+mQvQ机械能守恒,有12mPvP2+0=12mPvP'2+12mQvQ2联立解得vP'=mP−mQmP+mQvP=12vP整理可得cos β=14 cos α+34则cos β-cos α图线斜率的理论值应为14。3.答案 (1)0.420 挡光片中心 (2)2gH=2dt2解析 (1)游标卡尺主尺的读数为0.4 cm,游标尺读数为10×0.02 mm=0.20 mm,则d=0.4 cm+0.20 mm=0.420 cm;需测量出挡光片中心到光电门中心的竖直距离h。(2)重物A经过光电门时的速度v'=dt2,绳绷紧前,对B由机械能守恒定律可得MgH=12Mv2,解得v=2gH,则可知A、B作用前系统的总动量为p=Mv=M2gH;绳绷紧后A、B做匀速运动的速度大小相等,为v'=dt2,故A、B作用后的总动量p'=2Mv'=2Mdt2,故只要验证2gH=2dt2即可证明系统沿绳方向动量守恒。4.答案 (1)一角 (2)m1s0=m1s1+m2s2 s0=s2−s1 (3)见解析解析 (1)为了保证两硬币碰后都向右运动,需要入射硬币的质量大于被碰硬币的质量,故b选用的是一角硬币。(2)不放置硬币乙时,甲从O点到P点做匀减速直线运动,由牛顿第二定律得-μm1g=m1a由匀变速直线运动的速度-位移公式得0-v02=2as0联立解得v0=2μgs0同理,碰后两硬币的速度分别为v1=2μgs1,v2=2μgs2以碰撞前瞬间a的速度方向为正方向,a、b碰撞过程,由动量守恒定律得m1v0=m1v1+m2v2,整理得m1s0=m1s1+m2s2若碰撞前后动量守恒且机械能相等,则有12m1v02=12m1v12+12m2v22联立解得s0=s2−s1(3)产生误差可能的原因是:①两个硬币厚度不同,两硬币重心连线与水平面不平行;②两硬币碰撞内力不远远大于外力,只是近似满足动量守恒(即如果摩擦力比较大,只是近似满足动量守恒)。
相关资料
更多