|试卷下载
终身会员
搜索
    上传资料 赚现金
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版)
    立即下载
    加入资料篮
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版)01
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版)02
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版)03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版)

    展开
    这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版),共8页。试卷主要包含了已知椭圆的一个顶点为,焦距为,如图,已知椭圆,已知椭圆,已知和为椭圆上两点.,已知直线与抛物线交于两点,且等内容,欢迎下载使用。


    考点1:弦长、周长问题
    1.(2023年新课标全国Ⅰ卷数学真题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
    (1)求的方程;
    (2)已知矩形有三个顶点在上,证明:矩形的周长大于.
    2.(2022年新高考北京数学高考真题)已知椭圆的一个顶点为,焦距为.
    (1)求椭圆E的方程;
    (2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
    3.(2022年新高考浙江数学高考真题)如图,已知椭圆.设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点.
    (1)求点P到椭圆上点的距离的最大值;
    (2)求的最小值.
    考点2:斜率问题
    4.(2024年北京高考数学真题)已知椭圆:,以椭圆的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点且斜率存在的直线与椭圆交于不同的两点,过点和的直线与椭圆的另一个交点为.
    (1)求椭圆的方程及离心率;
    (2)若直线BD的斜率为0,求t的值.
    5.(2022年新高考全国II卷数学真题)已知双曲线的右焦点为,渐近线方程为.
    (1)求C的方程;
    (2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
    ①M在上;②;③.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    考点3:面积及面积比问题
    6.(2024年新课标全国Ⅰ卷数学真题)已知和为椭圆上两点.
    (1)求C的离心率;
    (2)若过P的直线交C于另一点B,且的面积为9,求的方程.
    7.(2023年高考全国甲卷数学(理)真题)已知直线与抛物线交于两点,且.
    (1)求;
    (2)设F为C的焦点,M,N为C上两点,,求面积的最小值.
    8.(2023年天津高考数学真题)已知椭圆的左右顶点分别为,右焦点为,已知.
    (1)求椭圆的方程和离心率;
    (2)点在椭圆上(异于椭圆的顶点),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.
    9.(2022年新高考全国I卷数学真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
    (1)求l的斜率;
    (2)若,求的面积.
    10.(2022年新高考天津数学高考真题)椭圆的右焦点为F、右顶点为A,上顶点为B,且满足.
    (1)求椭圆的离心率;
    (2)直线l与椭圆有唯一公共点M,与y轴相交于N(N异于M).记O为坐标原点,若,且的面积为,求椭圆的标准方程.
    11.(2024年新课标全国Ⅱ卷数学真题)已知双曲线,点在上,为常数,.按照如下方式依次构造点:过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
    (1)若,求;
    (2)证明:数列是公比为的等比数列;
    (3)设为的面积,证明:对任意正整数,.
    考点4:定直线问题
    12.(2023年新课标全国Ⅱ卷数学真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
    (1)求C的方程;
    (2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
    13.(2022年高考全国甲卷数学(理)真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
    (1)求C的方程;
    (2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
    考点5:向量问题
    14.(2024年天津高考数学真题)已知椭圆椭圆的离心率.左顶点为,下顶点为是线段的中点,其中.
    (1)求椭圆方程.
    (2)过点的动直线与椭圆有两个交点.在轴上是否存在点使得.若存在求出这个点纵坐标的取值范围,若不存在请说明理由.
    15.(2024年上海夏季高考数学真题)已知双曲线左右顶点分别为,过点的直线交双曲线于两点.
    (1)若离心率时,求的值.
    (2)若为等腰三角形时,且点在第一象限,求点的坐标.
    (3)连接并延长,交双曲线于点,若,求的取值范围.
    考点6:共线与平行问题
    16.(2023年北京高考数学真题)已知椭圆的离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,.
    (1)求的方程;
    (2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点.求证:.
    考点7:设点设线问题
    17.(2024年高考全国甲卷数学(理)真题)已知椭圆的右焦点为,点在上,且轴.
    (1)求的方程;
    (2)过点的直线交于两点,为线段的中点,直线交直线于点,证明:轴.
    考点8:定点定值问题
    18.(2023年高考全国乙卷数学(理)真题)已知椭圆的离心率是,点在上.
    (1)求的方程;
    (2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
    19.(2022年高考全国乙卷数学(理)真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
    (1)求E的方程;
    (2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
    考点
    三年考情(2022-2024)
    命题趋势
    考点1:弦长、周长问题
    2023年全国Ⅰ卷
    2022年北京卷
    2022年浙江卷
    从近三年的高考卷的考查情况来看,本节是高考的热点.直线与圆锥曲线综合问题是高考的热点,涉及直线与圆锥曲线关系中的求弦长、面积及弦中点、定点、定值、参数取值范围和最值等问题,多属于解答中的综合问题.近两年难度上有上升的趋势,但更趋于灵活.
    考点2:斜率问题
    2024年北京卷
    2022年全国II卷
    考点3:面积及面积比问题
    2024年全国Ⅰ卷
    2023年全国甲卷(理)
    2023年天津卷
    2022年全国I卷
    2022年天津卷
    2024年全国Ⅱ卷
    考点4:定直线问题
    2023年全国Ⅱ卷
    2022年全国甲卷(理)
    考点5:向量问题
    2024年天津卷
    2024年上海卷
    考点6:共线与平行问题
    2023年北京卷
    考点7:设点设线问题
    2024年全国甲卷(理)
    考点8:定点定值问题
    2023年全国乙卷(理)
    2022年全国乙卷(理)
    相关试卷

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题04 立体几何(文)(八大考点)(解析版): 这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题04 立体几何(文)(八大考点)(解析版),共26页。

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版): 这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版),共11页。试卷主要包含了已知函数,的极小值点和极大值点,设,函数,给出下列四个结论等内容,欢迎下载使用。

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(原卷版): 这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(原卷版),共7页。试卷主要包含了若为偶函数,则 等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map