三年(2022-2024)高考数学真题分类汇编(全国通用)专题05 平面解析几何(选择题、填空题)(十三大考点)(解析版)
展开
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题05 平面解析几何(选择题、填空题)(十三大考点)(解析版),共35页。
考点1:直线方程与圆的方程
1.(2022年新高考全国II卷数学真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为 .
【答案】
【解析】[方法一]:弦中点问题:点差法
令的中点为,设,,利用点差法得到,
设直线,,,求出、的坐标,
再根据求出、,即可得解;
令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,
所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
[方法二]:直线与圆锥曲线相交的常规方法
由题意知,点既为线段的中点又是线段MN的中点,
设,,设直线,,,
则,,,因为,所以
联立直线AB与椭圆方程得消掉y得
其中,
∴AB中点E的横坐标,又,∴
∵,,∴,又,解得m=2
所以直线,即
2.(2022年高考全国甲卷数学(文)真题)设点M在直线上,点和均在上,则的方程为 .
【答案】
【解析】[方法一]:三点共圆
∵点M在直线上,
∴设点M为,又因为点和均在上,
∴点M到两点的距离相等且为半径R,
∴,
,解得,
∴,,
的方程为.
故答案为:
[方法二]:圆的几何性质
由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线的交点(1,-1)., 的方程为.
故答案为:
3.(2022年高考全国乙卷数学(理)真题)过四点中的三点的一个圆的方程为 .
【答案】或或或.
【解析】[方法一]:圆的一般方程
依题意设圆的方程为,
(1)若过,,,则,解得,
所以圆的方程为,即;
(2)若过,,,则,解得,
所以圆的方程为,即;
(3)若过,,,则,解得,
所以圆的方程为,即;
(4)若过,,,则,解得,所以圆的方程为,即;
故答案为:或 或 或.
[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)
设
(1)若圆过三点,圆心在直线,设圆心坐标为,
则,所以圆的方程为;
(2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;
(3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;
(4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.
故答案为:或 或 或.
【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;
方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.
考点2:直线与圆的位置关系
4.(2024年北京高考数学真题)若直线与双曲线只有一个公共点,则的一个取值为 .
【答案】(或,答案不唯一)
【解析】联立,化简并整理得:,
由题意得或,
解得或无解,即,经检验,符合题意.
故答案为:(或,答案不唯一).
5.(2022年高考全国甲卷数学(理)真题)若双曲线的渐近线与圆相切,则 .
【答案】
【解析】双曲线的渐近线为,即,
不妨取,圆,即,所以圆心为,半径,
依题意圆心到渐近线的距离,
解得或(舍去).
故答案为:.
6.(2022年新高考天津数学高考真题)若直线与圆相交所得的弦长为,则 .
【答案】
【解析】圆的圆心坐标为,半径为,
圆心到直线的距离为,
由勾股定理可得,因为,解得.
故答案为:.
7.(2022年新高考北京数学高考真题)若直线是圆的一条对称轴,则( )
A.B.C.1D.
【答案】A
【解析】由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得.
故选:A.
8.(2023年新课标全国Ⅰ卷数学真题)过点与圆相切的两条直线的夹角为,则( )
A.1B.C.D.
【答案】B
【解析】方法一:因为,即,可得圆心,半径,
过点作圆C的切线,切点为,
因为,则,
可得,
则,
,
即为钝角,
所以;
法二:圆的圆心,半径,
过点作圆C的切线,切点为,连接,
可得,则,
因为
且,则,
即,解得,
即为钝角,则,
且为锐角,所以;
方法三:圆的圆心,半径,
若切线斜率不存在,则切线方程为,则圆心到切点的距离,不合题意;
若切线斜率存在,设切线方程为,即,
则,整理得,且
设两切线斜率分别为,则,
可得,
所以,即,可得,
则,
且,则,解得.
故选:B.
9.(2024年北京高考数学真题)圆的圆心到直线的距离为( )
A.B.C.D.
【答案】D
【解析】由题意得,即,
则其圆心坐标为,则圆心到直线的距离为.
故选:D.
考点3:圆与圆的位置关系
10.(2022年新高考全国I卷数学真题)写出与圆和都相切的一条直线的方程 .
【答案】或或
【解析】[方法一]:
显然直线的斜率不为0,不妨设直线方程为,
于是,
故①,于是或,
再结合①解得或或,
所以直线方程有三条,分别为,,
填一条即可
[方法二]:
设圆的圆心,半径为,
圆的圆心,半径,
则,因此两圆外切,
由图像可知,共有三条直线符合条件,显然符合题意;
又由方程和相减可得方程,
即为过两圆公共切点的切线方程,
又易知两圆圆心所在直线OC的方程为,
直线OC与直线的交点为,
设过该点的直线为,则,解得,
从而该切线的方程为填一条即可
[方法三]:
圆的圆心为,半径为,
圆的圆心为,半径为,
两圆圆心距为,等于两圆半径之和,故两圆外切,
如图,
当切线为l时,因为,所以,设方程为
O到l的距离,解得,所以l的方程为,
当切线为m时,设直线方程为,其中,,
由题意,解得,
当切线为n时,易知切线方程为,
故答案为:或或.
考点4:轨迹方程及标准方程
11.(2023年北京高考数学真题)已知双曲线C的焦点为和,离心率为,则C的方程为 .
【答案】
【解析】令双曲线的实半轴、虚半轴长分别为,显然双曲线的中心为原点,焦点在x轴上,其半焦距,
由双曲线的离心率为,得,解得,则,
所以双曲线的方程为.
故答案为:
12.(2023年天津高考数学真题)已知双曲线的左、右焦点分别为.过向一条渐近线作垂线,垂足为.若,直线的斜率为,则双曲线的方程为( )
A.B.
C.D.
【答案】D
【解析】如图,
因为,不妨设渐近线方程为,即,
所以,
所以.
设,则,所以,所以.
因为,所以,所以,所以,
所以,
因为,
所以,
所以,解得,
所以双曲线的方程为
故选:D
13.(2022年新高考天津数学高考真题)已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为( )
A.B.
C.D.
【答案】C
【解析】抛物线的准线方程为,则,则、,
不妨设点为第二象限内的点,联立,可得,即点,
因为且,则为等腰直角三角形,
且,即,可得,
所以,,解得,因此,双曲线的标准方程为.
故选:C.
14.(2022年高考全国甲卷数学(文)真题)已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A.B.C.D.
【答案】B
【解析】因为离心率,解得,,
分别为C的左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
故选:B.
15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C:(),从C上任意一点P向x轴作垂线段,为垂足,则线段的中点M的轨迹方程为( )
A.()B.()
C.()D.()
【答案】A
【解析】设点,则,
因为为的中点,所以,即,
又在圆上,
所以,即,
即点的轨迹方程为.
故选:A
考点5:椭圆的几何性质
16.(2022年新高考全国I卷数学真题)已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是 .
【答案】13
【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
判别式,
∴,
∴ , 得,
∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
故答案为:13.
17.(2023年高考全国甲卷数学(理)真题)设O为坐标原点,为椭圆的两个焦点,点 P在C上,,则( )
A.B.C.D.
【答案】B
【解析】方法一:设,所以,
由,解得:,
由椭圆方程可知,,
所以,,解得:,
即,因此.
故选:B.
方法二:因为①,,
即②,联立①②,
解得:,
而,所以,
即.
故选:B.
方法三:因为①,,
即②,联立①②,解得:,
由中线定理可知,,易知,解得:.
故选:B.
18.(2023年高考全国甲卷数学(文)真题)设为椭圆的两个焦点,点在上,若,则( )
A.1B.2C.4D.5
【答案】B
【解析】方法一:因为,所以,
从而,所以.
故选:B.
方法二:
因为,所以,由椭圆方程可知,,
所以,又,平方得:
,所以.
故选:B.
考点6:双曲线的几何性质
19.(2022年新高考北京数学高考真题)已知双曲线的渐近线方程为,则 .
【答案】
【解析】对于双曲线,所以,即双曲线的标准方程为,
则,,又双曲线的渐近线方程为,
所以,即,解得;
故答案为:
20.(2023年高考全国乙卷数学(理)真题)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
A.B.C.D.
【答案】D
【解析】设,则的中点,
可得,
因为在双曲线上,则,两式相减得,
所以.
对于选项A: 可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故A错误;
对于选项B:可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故B错误;
对于选项C:可得,则
由双曲线方程可得,则为双曲线的渐近线,
所以直线AB与双曲线没有交点,故C错误;
对于选项D:,则,
联立方程,消去y得,
此时,故直线AB与双曲线有交两个交点,故D正确;
故选:D.
考点7:抛物线的几何性质
21.(2024年北京高考数学真题)抛物线的焦点坐标为 .
【答案】
【解析】由题意抛物线的标准方程为,所以其焦点坐标为.
故答案为:.
22.(2024年天津高考数学真题)圆的圆心与抛物线的焦点重合,为两曲线的交点,则原点到直线的距离为 .
【答案】/
【解析】圆的圆心为,故即,
由可得,故或(舍),
故,故直线即或,
故原点到直线的距离为,
故答案为:
23.(2023年高考全国乙卷数学(理)真题)已知点在抛物线C:上,则A到C的准线的距离为 .
【答案】
【解析】由题意可得:,则,抛物线的方程为,
准线方程为,点到的准线的距离为.
故答案为:.
24.(2023年天津高考数学真题)已知过原点O的一条直线l与圆相切,且l与抛物线交于点两点,若,则 .
【答案】
【解析】易知圆和曲线关于轴对称,不妨设切线方程为,,
所以,解得:,由解得:或,
所以,解得:.
当时,同理可得.
故答案为:.
25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C:的准线为l,P为C上的动点,过P作的一条切线,Q为切点,过P作l的垂线,垂足为B,则( )
A.l与相切
B.当P,A,B三点共线时,
C.当时,
D.满足的点有且仅有2个
【答案】ABD
【解析】A选项,抛物线的准线为,
的圆心到直线的距离显然是,等于圆的半径,
故准线和相切,A选项正确;
B选项,三点共线时,即,则的纵坐标,
由,得到,故,
此时切线长,B选项正确;
C选项,当时,,此时,故或,
当时,,,,
不满足;
当时,,,,
不满足;
于是不成立,C选项错误;
D选项,方法一:利用抛物线定义转化
根据抛物线的定义,,这里,
于是时点的存在性问题转化成时点的存在性问题,
,中点,中垂线的斜率为,
于是的中垂线方程为:,与抛物线联立可得,
,即的中垂线和抛物线有两个交点,
即存在两个点,使得,D选项正确.
方法二:(设点直接求解)
设,由可得,又,又,
根据两点间的距离公式,,整理得,
,则关于的方程有两个解,
即存在两个这样的点,D选项正确.
故选:ABD
26.(多选题)(2022年新高考全国I卷数学真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为B.直线AB与C相切
C.D.
【答案】BCD
【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
,所以直线的方程为,
联立,可得,解得,故B正确;
设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
所以,直线的斜率存在,设其方程为,,
联立,得,
所以,所以或,,
又,,
所以,故C正确;
因为,,
所以,而,故D正确.
故选:BCD
27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).
A.B.
C.以MN为直径的圆与l相切D.为等腰三角形
【答案】AC
【解析】A选项:直线过点,所以抛物线的焦点,
所以,则A选项正确,且抛物线的方程为.
B选项:设,
由消去并化简得,
解得,所以,B选项错误.
C选项:设的中点为,到直线的距离分别为,
因为,
即到直线的距离等于的一半,所以以为直径的圆与直线相切,C选项正确.
D选项:直线,即,
到直线的距离为,
所以三角形的面积为,
由上述分析可知,
所以,
所以三角形不是等腰三角形,D选项错误.
故选:AC.
考点8:弦长问题
28.(2022年高考全国乙卷数学(理)真题)设F为抛物线的焦点,点A在C上,点,若,则( )
A.2B.C.3D.
【答案】B
【解析】由题意得,,则,
即点到准线的距离为2,所以点的横坐标为,
不妨设点在轴上方,代入得,,
所以.
故选:B
29.(2023年高考全国甲卷数学(理)真题)已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
A.B.C.D.
【答案】D
【解析】由,则,
解得,
所以双曲线的一条渐近线为,
则圆心到渐近线的距离,
所以弦长.
故选:D
考点9:离心率问题
30.(2024年新课标全国Ⅰ卷数学真题)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
【答案】
【解析】由题可知三点横坐标相等,设在第一象限,将代入
得,即,故,,
又,得,解得,代入得,
故,即,所以.
故答案为:
31.(2022年高考全国甲卷数学(文)真题)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值 .
【答案】2(满足皆可)
【解析】,所以C的渐近线方程为,
结合渐近线的特点,只需,即,
可满足条件“直线与C无公共点”
所以,
又因为,所以,
故答案为:2(满足皆可)
32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为 .
【答案】/
【解析】方法一:
依题意,设,则,
在中,,则,故或(舍去),
所以,,则,
故,
所以在中,,整理得,
故.
方法二:
依题意,得,令,
因为,所以,则,
又,所以,则,
又点在上,则,整理得,则,
所以,即,
整理得,则,解得或,
又,所以或(舍去),故.
故答案为:.
33.(2022年新高考浙江数学高考真题)已知双曲线的左焦点为F,过F且斜率为的直线交双曲线于点,交双曲线的渐近线于点且.若,则双曲线的离心率是 .
【答案】
【解析】过且斜率为的直线,渐近线,
联立,得,由,得
而点在双曲线上,于是,解得:,所以离心率.
故答案为:.
34.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A.B.C.D.
【答案】AC
【解析】[方法一]:几何法,双曲线定义的应用
情况一
M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
所以,因为,所以在双曲线的左支,
,, ,设,由即,则,
选A
情况二
若M、N在双曲线的两支,因为,所以在双曲线的右支,
所以,, ,设,
由,即,则,
所以,即,
所以双曲线的离心率
选C
[方法二]:答案回代法
特值双曲线
,
过且与圆相切的一条直线为,
两交点都在左支,,
,
则,
特值双曲线,
过且与圆相切的一条直线为,
两交点在左右两支,在右支,,
,
则,
[方法三]:
依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
若分别在左右支,
因为,且,所以在双曲线的右支,
又,,,
设,,
在中,有,
故即,
所以,
而,,,故,
代入整理得到,即,
所以双曲线的离心率
若均在左支上,
同理有,其中为钝角,故,
故即,
代入,,,整理得到:,
故,故,
故选:AC.
35.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为,点在该双曲线上,则该双曲线的离心率为( )
A.4B.3C.2D.
【答案】C
【解析】由题意,设、、,
则,,,
则,则.
故选:C.
36.(2023年新课标全国Ⅰ卷数学真题)设椭圆的离心率分别为.若,则( )
A.B.C.D.
【答案】A
【解析】由,得,因此,而,所以.
故选:A
37.(2022年高考全国甲卷数学(理)真题)椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A.B.C.D.
【答案】A
【解析】[方法一]:设而不求
设,则
则由得:,
由,得,
所以,即,
所以椭圆的离心率,故选A.
[方法二]:第三定义
设右端点为B,连接PB,由椭圆的对称性知:
故,
由椭圆第三定义得:,
故
所以椭圆的离心率,故选A.
考点10:焦半径、焦点弦问题
38.(多选题)(2022年新高考全国II卷数学真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为B.
C.D.
【答案】ACD
【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
39.(2023年北京高考数学真题)已知抛物线的焦点为,点在上.若到直线的距离为5,则( )
A.7B.6C.5D.4
【答案】D
【解析】因为抛物线的焦点,准线方程为,点在上,
所以到准线的距离为,
又到直线的距离为,
所以,故.
故选:D.
考点11:范围与最值问题
40.(2022年新高考全国II卷数学真题)设点,若直线关于对称的直线与圆有公共点,则a的取值范围是 .
【答案】
【解析】关于对称的点的坐标为,在直线上,
所以所在直线即为直线,所以直线为,即;
圆,圆心,半径,
依题意圆心到直线的距离,
即,解得,即;
故答案为:
41.(2024年高考全国甲卷数学(文)真题)已知直线与圆交于两点,则的最小值为( )
A.2B.3C.4D.6
【答案】C
【解析】因为直线,即,令,
则,所以直线过定点,设,
将圆化为标准式为,
所以圆心,半径,
当时,的最小,
此时.
故选:C
42.(2023年高考全国乙卷数学(文)真题)已知实数满足,则的最大值是( )
A.B.4C.D.7
【答案】C
【解析】法一:令,则,
代入原式化简得,
因为存在实数,则,即,
化简得,解得,
故 的最大值是,
法二:,整理得,
令,,其中,
则,
,所以,则,即时,取得最大值,
法三:由可得,
设,则圆心到直线的距离,
解得
故选:C.
考点12:面积问题
43.(2024年天津高考数学真题)双曲线的左、右焦点分别为是双曲线右支上一点,且直线的斜率为2.是面积为8的直角三角形,则双曲线的方程为( )
A.B.C.D.
【答案】C
【解析】如下图:由题可知,点必落在第四象限,,设,
,由,求得,
因为,所以,求得,即,
,由正弦定理可得:,
则由得,
由得,
则,
由双曲线第一定义可得:,,
所以双曲线的方程为.
故选:C
44.(2023年新课标全国Ⅱ卷数学真题)已知直线与交于A,B两点,写出满足“面积为”的m的一个值 .
【答案】(中任意一个皆可以)
【解析】设点到直线的距离为,由弦长公式得,
所以,解得:或,
由,所以或,解得:或.
故答案为:(中任意一个皆可以).
45.(2023年新课标全国Ⅱ卷数学真题)已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).
A.B.C.D.
【答案】C
【解析】将直线与椭圆联立,消去可得,
因为直线与椭圆相交于点,则,解得,
设到的距离到距离,易知,
则,,
,解得或(舍去),
故选:C.
考点13:新定义问题
46.(多选题)(2024年新课标全国Ⅰ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C的一部分.已知C过坐标原点O.且C上的点满足:横坐标大于,到点的距离与到定直线的距离之积为4,则( )
A.B.点在C上
C.C在第一象限的点的纵坐标的最大值为1D.当点在C上时,
【答案】ABD
【解析】对于A:设曲线上的动点,则且,
因为曲线过坐标原点,故,解得,故A正确.
对于B:又曲线方程为,而,
故.
当时,,
故在曲线上,故B正确.
对于C:由曲线的方程可得,取,
则,而,故此时,
故在第一象限内点的纵坐标的最大值大于1,故C错误.
对于D:当点在曲线上时,由C的分析可得,
故,故D正确.
故选:ABD.
考点
三年考情(2022-2024)
命题趋势
考点1:直线方程与圆的方程
2022年全国II卷、2022年全国甲卷(文)
2022年全国乙卷(理)
近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:
(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.
(2)要重视直线与圆相交所得弦长及相切所得切线的问题.
(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.
考点2:直线与圆的位置关系
2024年北京卷、2022年全国甲卷(理)
2022年天津卷、2022年北京卷
2023年全国Ⅰ卷、2024年北京卷
考点3:圆与圆的位置关系
2022年全国I卷
考点4:轨迹方程及标准方程
2023年北京卷、2023年天津卷
2024年全国Ⅱ卷、2022年天津卷
2022年全国甲卷(文)
考点5:椭圆的几何性质
2022年全国I卷
2023年全国甲卷(理)
2023年全国甲卷(文)
考点6:双曲线的几何性质
2022年北京卷
2023年全国乙卷(理)
考点7:抛物线的几何性质
2024年北京卷、2024年天津卷
2023年全国乙卷(理)
2023年天津卷、2023年全国Ⅱ卷
2024年全国Ⅱ卷、2022年全国I卷
考点8:弦长问题
2022年全国乙卷(理)
2023年全国甲卷(理)
考点9:离心率问题
2024年全国Ⅰ卷、2022年全国甲卷(文)
2023年全国Ⅰ卷、2022年浙江卷
2022年全国乙卷(理)
2024年全国甲卷(理)
2023年全国Ⅰ卷、2022年全国甲卷(理)
考点10:焦半径、焦点弦问题
2022年全国II卷、2023年北京卷
考点11:范围与最值问题
2022年全国II卷
2024年全国甲卷(文)
2023年全国乙卷(文)
考点12:面积问题
2024年天津卷、2023年全国Ⅱ卷
2023年全国Ⅱ卷
考点13:新定义问题
2024年全国Ⅰ卷
相关试卷
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(解析版),共33页。试卷主要包含了已知椭圆的一个顶点为,焦距为,如图,已知椭圆,已知椭圆,已知和为椭圆上两点.,已知直线与抛物线交于两点,且等内容,欢迎下载使用。
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题06 平面解析几何(解答题)(八大考点)(原卷版),共8页。试卷主要包含了已知椭圆的一个顶点为,焦距为,如图,已知椭圆,已知椭圆,已知和为椭圆上两点.,已知直线与抛物线交于两点,且等内容,欢迎下载使用。
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题05 平面解析几何(选择题、填空题)(十三大考点)(原卷版),共7页。