|试卷下载
终身会员
搜索
    上传资料 赚现金
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版)
    立即下载
    加入资料篮
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版)01
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版)02
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版)03
    还剩8页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版)

    展开
    这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题03 导数及其应用(八大考点)(原卷版),共11页。试卷主要包含了已知函数,的极小值点和极大值点,设,函数,给出下列四个结论等内容,欢迎下载使用。


    考点1:切线问题
    1.(2024年高考全国甲卷数学(理)真题)设函数,则曲线在点处的切线与两坐标轴所围成的三角形的面积为( )
    A.B.C.D.
    2.(2023年高考全国甲卷数学(文)真题)曲线在点处的切线方程为( )
    A.B.C.D.
    3.(2024年新课标全国Ⅰ卷数学真题)若曲线在点处的切线也是曲线的切线,则 .
    4.(2022年新高考全国II卷数学真题)曲线过坐标原点的两条切线的方程为 , .
    5.(2022年新高考全国I卷数学真题)若曲线有两条过坐标原点的切线,则a的取值范围是 .
    考点2:单调性、极最值问题
    6.(2023年高考全国乙卷数学(文)真题)已知函数.
    (1)当时,求曲线在点处的切线方程.
    (2)若函数在单调递增,求的取值范围.
    7.(2022年高考全国乙卷数学(理)真题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是 .
    8.(2023年北京高考数学真题)设,函数,给出下列四个结论:
    ①在区间上单调递减;
    ②当时,存在最大值;
    ③设,则;
    ④设.若存在最小值,则a的取值范围是.
    其中所有正确结论的序号是 .
    9.(多选题)(2024年新课标全国Ⅰ卷数学真题)设函数,则( )
    A.是的极小值点B.当时,
    C.当时,D.当时,
    10.(多选题)(2024年新课标全国Ⅱ卷数学真题)设函数,则( )
    A.当时,有三个零点
    B.当时,是的极大值点
    C.存在a,b,使得为曲线的对称轴
    D.存在a,使得点为曲线的对称中心
    11.(多选题)(2023年新课标全国Ⅱ卷数学真题)若函数既有极大值也有极小值,则( ).
    A.B.C.D.
    12.(2023年新课标全国Ⅱ卷数学真题)已知函数在区间上单调递增,则a的最小值为( ).
    A.B.eC.D.
    13.(2022年高考全国乙卷数学(文)真题)函数在区间的最小值、最大值分别为( )
    A.B.C.D.
    考点3:比较大小问题
    14.(2022年高考全国甲卷数学(文)真题)已知,则( )
    A.B.C.D.
    15.(2022年高考全国甲卷数学(理)真题)已知,则( )
    A.B.C.D.
    16.(2022年新高考全国I卷数学真题)设,则( )
    A.B.C.D.
    17.(2024年北京高考数学真题)已知,是函数的图象上两个不同的点,则( )
    A.B.
    C.D.
    18.(2024年天津高考数学真题)若,则的大小关系为( )
    A.B.C.D.
    19.(2023年高考全国甲卷数学(文)真题)已知函数.记,则( )
    A.B.C.D.
    20.(2023年天津高考数学真题)设,则的大小关系为( )
    A.B.
    C.D.
    考点4:恒成立与有解问题
    21.(2024年新课标全国Ⅱ卷数学真题)设函数,若,则的最小值为( )
    A.B.C.D.1
    22.(2023年高考全国甲卷数学(文)真题)已知函数.
    (1)当时,讨论的单调性;
    (2)若,求的取值范围.
    23.(2023年高考全国甲卷数学(理)真题)已知函数
    (1)当时,讨论的单调性;
    (2)若恒成立,求a的取值范围.
    24.(2024年高考全国甲卷数学(理)真题)已知函数.
    (1)当时,求的极值;
    (2)当时,,求的取值范围.
    25.(2024年新课标全国Ⅰ卷数学真题)已知函数
    (1)若,且,求的最小值;
    (2)证明:曲线是中心对称图形;
    (3)若当且仅当,求的取值范围.
    考点5:极最值问题
    26.(2023年高考全国乙卷数学(理)真题)已知函数.
    (1)当时,求曲线在点处的切线方程;
    (2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.
    (3)若在存在极值,求a的取值范围.
    27.(2023年北京高考数学真题)设函数,曲线在点处的切线方程为.
    (1)求的值;
    (2)设函数,求的单调区间;
    (3)求的极值点个数.
    28.(2024年新课标全国Ⅱ卷数学真题)已知函数.
    (1)当时,求曲线在点处的切线方程;
    (2)若有极小值,且极小值小于0,求a的取值范围.
    考点6:证明不等式
    29.(2024年高考全国甲卷数学(文)真题)已知函数.
    (1)求的单调区间;
    (2)当时,证明:当时,恒成立.
    30.(2023年天津高考数学真题)已知函数.
    (1)求曲线在处的切线斜率;
    (2)求证:当时,;
    (3)证明:.
    31.(2023年新课标全国Ⅰ卷数学真题)已知函数.
    (1)讨论的单调性;
    (2)证明:当时,.
    32.(2023年新课标全国Ⅱ卷数学真题)(1)证明:当时,;
    (2)已知函数,若是的极大值点,求a的取值范围.
    33.(2022年新高考全国II卷数学真题)已知函数.
    (1)当时,讨论的单调性;
    (2)当时,,求a的取值范围;
    (3)设,证明:.
    考点7:双变量问题(极值点偏移、拐点偏移)
    34.(2022年高考全国甲卷数学(理)真题)已知函数.
    (1)若,求a的取值范围;
    (2)证明:若有两个零点,则.
    35.(2022年新高考北京数学高考真题)已知函数.
    (1)求曲线在点处的切线方程;
    (2)设,讨论函数在上的单调性;
    (3)证明:对任意的,有.
    36.(2022年新高考天津数学高考真题)已知,函数
    (1)求函数在处的切线方程;
    (2)若和有公共点,
    (i)当时,求的取值范围;
    (ii)求证:.
    37.(2022年新高考浙江数学高考真题)设函数.
    (1)求的单调区间;
    (2)已知,曲线上不同的三点处的切线都经过点.证明:
    (ⅰ)若,则;
    (ⅱ)若,则.
    (注:是自然对数的底数)
    38.(2024年天津高考数学真题)设函数.
    (1)求图象上点处的切线方程;
    (2)若在时恒成立,求的值;
    (3)若,证明.
    考点8:零点问题
    39.(2024年新课标全国Ⅱ卷数学真题)设函数,,当时,曲线与恰有一个交点,则( )
    A.B.C.1D.2
    40.(2023年高考全国乙卷数学(文)真题)函数存在3个零点,则的取值范围是( )
    A.B.C.D.
    41.(2024年天津高考数学真题)若函数恰有一个零点,则的取值范围为 .
    42.(2024年高考全国甲卷数学(文)真题)曲线与在上有两个不同的交点,则的取值范围为 .
    43.(2023年天津高考数学真题)设,函数,若恰有两个零点,则的取值范围为 .
    44.(2022年新高考天津数学高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .
    45.(2024年北京高考数学真题)设函数,直线是曲线在点处的切线.
    (1)当时,求的单调区间.
    (2)求证:不经过点.
    (3)当时,设点,,,为与轴的交点,与分别表示与的面积.是否存在点使得成立?若存在,这样的点有几个?
    (参考数据:,,)
    46.(2022年高考全国乙卷数学(文)真题)已知函数.
    (1)当时,求的最大值;
    (2)若恰有一个零点,求a的取值范围.
    47.(2022年高考全国甲卷数学(文)真题)已知函数,曲线在点处的切线也是曲线的切线.
    (1)若,求a;
    (2)求a的取值范围.
    48.(2022年高考全国乙卷数学(理)真题)已知函数
    (1)当时,求曲线在点处的切线方程;
    (2)若在区间各恰有一个零点,求a的取值范围.
    49.(2022年新高考全国I卷数学真题)已知函数和有相同的最小值.
    (1)求a;
    (2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
    考点
    三年考情(2022-2024)
    命题趋势
    考点1:切线问题
    2024年全国甲卷(理)、2023年全国甲卷(文)
    2024年全国Ⅰ卷、2022年全国II卷
    2022年全国I卷
    高考对导数及其应用的考查相对稳定,属于重点考查的内容.高考在本节内容上无论试题怎样变化,我们只要把握好导数作为研究函数的有力工具这一点,将函数的单调性、极值、最值等本质问题利用图像直观明了地展示出来,其余的就是具体问题的转化了.最终的落脚点一定是函数的单调性与最值,因为它们是导数永恒的主题.
    考点2:单调性、极最值问题
    2023年全国乙卷(文)
    2022年全国乙卷(理)
    2023年北京卷
    2024年全国Ⅰ卷、2024年全国Ⅱ卷
    2023年全国Ⅱ卷、2023年全国Ⅱ卷
    2022年全国乙卷(文)
    考点3:比较大小问题
    2022年全国甲卷(文)
    2022年全国甲卷(理)
    2022年全国I卷、2024年北京卷
    2024年天津卷
    2023年全国甲卷(文)、2023年天津卷
    考点4:恒成立与有解问题
    2024年新课标全国Ⅱ卷
    2023年全国甲卷(文)、2023年全国甲卷(理)
    2024年全国甲卷(理)、2024年全国Ⅰ卷
    考点5:极最值问题
    2023年全国乙卷(理)
    2023年北京卷
    2024年全国Ⅱ卷
    考点6:证明不等式
    2024年全国甲卷(文)、2023年天津卷
    2023年全国Ⅰ卷、2023年全国Ⅱ卷
    2022年全国II卷
    考点7:双变量问题(极值点偏移、拐点偏移)
    2022年全国甲卷(理)
    2022年北京卷、2022年天津卷
    2022年浙江卷、2024年天津卷
    考点8:零点问题
    2024年全国Ⅱ卷
    2023年全国乙卷(文)、2024年天津卷
    2024年全国甲卷(文)
    2023年天津卷、2022年天津卷
    2024年北京卷
    2022年全国乙卷(文)、2022年全国甲卷(文)
    2022年全国乙卷(理)、2022年全国I卷
    相关试卷

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(解析版): 这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(解析版),共19页。试卷主要包含了若为偶函数,则 等内容,欢迎下载使用。

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(原卷版): 这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(原卷版),共7页。试卷主要包含了若为偶函数,则 等内容,欢迎下载使用。

    专题10 数列(九大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用): 这是一份专题10 数列(九大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题10数列九大考点原卷版docx、专题10数列九大考点解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map